Large phase shift of nonlocal optical spatial solitons

被引:288
作者
Guo, Q [1 ]
Luo, B
Yi, FH
Chi, S
Xie, YQ
机构
[1] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu, Taiwan
[2] S China Normal Univ, Lab Light Transmiss Opt, Guangzhou, Guangdong, Peoples R China
[3] S China Normal Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we discuss the evolution of the optical beam in nonlocal cubic nonlinear media, modeled by the nonlocal nonlinear Schrodinger equation (NNLSE). A different approximate model to the NNLSE is presented for the strongly nonlocal media with arbitrary response functions. An exact analytical solution of the model is obtained, and a spatial soliton is found to exist. A different phenomenon is revealed that the phase shift of such a nonlocal optical spatial soliton can be very large comparable to its local counterpart. The stability of the solution is rigorously proved. The comparisons of our analytical solution with the numerical simulation of the NNLSE, as well as with Snyder-Mitchell (linear) model [A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997)] are given.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Solitary waves and their critical behavior in a nonlinear nonlocal medium with power-law response [J].
Abe, S ;
Ogura, A .
PHYSICAL REVIEW E, 1998, 57 (05) :6066-6070
[2]  
Agrawal G., 2001, Nonlinear Fibers Optics, V3rd
[3]  
Agrawal G.P., 2010, Application of nonlinear fiber optics, Vsecond
[4]   OBSERVATION OF SPATIAL OPTICAL SOLITONS IN A NONLINEAR GLASS WAVE-GUIDE [J].
AITCHISON, JS ;
WEINER, AM ;
SILBERBERG, Y ;
OLIVER, MK ;
JACKEL, JL ;
LEAIRD, DE ;
VOGEL, EM ;
SMITH, PWE .
OPTICS LETTERS, 1990, 15 (09) :471-473
[5]   Collapse arrest and soliton stabilization in nonlocal nonlinear media [J].
Bang, O ;
Krolikowski, W ;
Wyller, J ;
Rasmussen, JJ .
PHYSICAL REVIEW E, 2002, 66 (04) :5
[6]   Route to nonlocality and observation of accessible solitons [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (07)
[7]   Sub-wavelength non-local spatial solitons [J].
Granot, E ;
Sternklar, S ;
Isbi, Y ;
Malomed, B ;
Lewis, A .
OPTICS COMMUNICATIONS, 1999, 166 (1-6) :121-126
[8]   Solitons in nonlocal nonlinear media:: Exact solutions -: art. no. 016610 [J].
Królikowski, W ;
Bang, O .
PHYSICAL REVIEW E, 2001, 63 (01)
[9]   Modulational instability in nonlocal nonlinear Kerr media [J].
Krolikowski, W. ;
Bang, O. ;
Rasmussen, J.J. ;
Wyller, J. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 II) :1-016612
[10]   Soliton dynamics in a nonlocal medium [J].
Mitchell, DJ ;
Snyder, AW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (02) :236-239