Spatiotemporal Costmap Inference for MPC Via Deep Inverse Reinforcement Learning

被引:15
作者
Lee, Keuntaek [1 ]
Isele, David [2 ]
Theodorou, Evangelos A. [3 ]
Bae, Sangjae [2 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30318 USA
[2] Honda Res Inst USA Inc, Div Res, San Jose, CA 95110 USA
[3] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30318 USA
关键词
Learning from demonstration; reinforcement learning; optimization and optimal control; motion and path planning; autonomous vehicle navigation;
D O I
10.1109/LRA.2022.3146635
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
It can he difficult to autonomously produce driver behavior so that it appears natural to other traffic participants. Through Inverse Reinforcement Learning (IRL), we can automate this process by learning the underlying reward function from human demonstrations. We propose a new IRL algorithm that learns a goal-conditioned spatio-temporal reward function. The resulting costmap is used by Model Predictive Controllers (MPCs) to perform a task without any hand-designing or hand-tuning of the cost function. We evaluate our proposed Goal-conditioned SpatioTemporal Zeroing Maximum Entropy Deep IRL (GSTZ)-MEDIRL framework together with MPC in the CARLA simulator for autonomous driving, lane keeping, and lane changing tasks in a challenging dense traffic highway scenario. Our proposed methods show higher success rates compared to other baseline methods including behavior cloning, state-of-the-art RL policies, and MPC with a learning-based behavior prediction model.
引用
收藏
页码:3194 / 3201
页数:8
相关论文
共 50 条
  • [31] Estimating price impact via deep reinforcement learning
    Cao, Yi
    Zhai, Jia
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2022, 27 (04) : 3954 - 3970
  • [32] Robust quadruped jumping via deep reinforcement learning
    Bellegarda, Guillaume
    Nguyen, Chuong
    Nguyen, Quan
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 182
  • [33] Harmonious Lane Changing via Deep Reinforcement Learning
    Wang, Guan
    Hu, Jianming
    Li, Zhiheng
    Li, Li
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (05) : 4642 - 4650
  • [34] CRACK DETECTION AND REFINEMENT VIA DEEP REINFORCEMENT LEARNING
    Park, Jinhyung
    Chen, Yi-Chun
    Li, Yu-Jhe
    Kitani, Kris
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 529 - 533
  • [35] Traffic signal timing via deep reinforcement learning
    Li L.
    Lv Y.
    Wang F.-Y.
    Li, Li (li-li@tsinghua.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc. (03): : 247 - 254
  • [36] Traffic Signal Timing via Deep Reinforcement Learning
    Li Li
    Yisheng Lv
    Fei-Yue Wang
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (03) : 247 - 247
  • [37] Bin Packing Optimization via Deep Reinforcement Learning
    Wang, Baoying
    Lin, Zhaohui
    Kong, Weijie
    Dong, Huixu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2542 - 2549
  • [38] Lung Nodule Detection via Deep Reinforcement Learning
    Ali, Issa
    Hart, Gregory R.
    Gunabushanam, Gowthaman
    Liang, Ying
    Muhammad, Wazir
    Nartowt, Bradley
    Kane, Michael
    Ma, Xiaomei
    Deng, Jun
    FRONTIERS IN ONCOLOGY, 2018, 8
  • [39] Reinforcement Learning for MPC: Fundamentals and Current Challenges
    Gros, Sebastien
    IFAC PAPERSONLINE, 2023, 56 (02): : 5773 - 5780
  • [40] Score-based Inverse Reinforcement Learning
    El Asri, Layla
    Piot, Bilal
    Geist, Matthieu
    Laroche, Romain
    Pietquin, Olivier
    AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2016, : 457 - 465