Spatiotemporal Costmap Inference for MPC Via Deep Inverse Reinforcement Learning

被引:15
作者
Lee, Keuntaek [1 ]
Isele, David [2 ]
Theodorou, Evangelos A. [3 ]
Bae, Sangjae [2 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30318 USA
[2] Honda Res Inst USA Inc, Div Res, San Jose, CA 95110 USA
[3] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30318 USA
关键词
Learning from demonstration; reinforcement learning; optimization and optimal control; motion and path planning; autonomous vehicle navigation;
D O I
10.1109/LRA.2022.3146635
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
It can he difficult to autonomously produce driver behavior so that it appears natural to other traffic participants. Through Inverse Reinforcement Learning (IRL), we can automate this process by learning the underlying reward function from human demonstrations. We propose a new IRL algorithm that learns a goal-conditioned spatio-temporal reward function. The resulting costmap is used by Model Predictive Controllers (MPCs) to perform a task without any hand-designing or hand-tuning of the cost function. We evaluate our proposed Goal-conditioned SpatioTemporal Zeroing Maximum Entropy Deep IRL (GSTZ)-MEDIRL framework together with MPC in the CARLA simulator for autonomous driving, lane keeping, and lane changing tasks in a challenging dense traffic highway scenario. Our proposed methods show higher success rates compared to other baseline methods including behavior cloning, state-of-the-art RL policies, and MPC with a learning-based behavior prediction model.
引用
收藏
页码:3194 / 3201
页数:8
相关论文
共 50 条
  • [11] Learning Battles in ViZDoom via Deep Reinforcement Learning
    Shao, Kun
    Zhao, Dongbin
    Li, Nannan
    Zhu, Yuanheng
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG'18), 2018, : 389 - 392
  • [12] Deep sparse representation via deep dictionary learning for reinforcement learning
    Tang, Jianhao
    Li, Zhenni
    Xie, Shengli
    Ding, Shuxue
    Zheng, Shaolong
    Chen, Xueni
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2398 - 2403
  • [13] Photo Cropping via Deep Reinforcement Learning
    Zhang, Yaqing
    Li, Xueming
    Li, Xuewei
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 86 - 90
  • [14] Hypernetwork Dismantling via Deep Reinforcement Learning
    Yan, Dengcheng
    Xie, Wenxin
    Zhang, Yiwen
    He, Qiang
    Yang, Yun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3302 - 3315
  • [15] HIERARCHICAL CACHING VIA DEEP REINFORCEMENT LEARNING
    Sadeghi, Alireza
    Wang, Gang
    Giannakis, Georgios B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3532 - 3536
  • [16] DEEPMPC: A MIXTURE ABR APPROACH VIA DEEP LEARNING AND MPC
    Huang, Tianchi
    Sun, Lifeng
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1231 - 1235
  • [17] Improving Deep Reinforcement Learning via Transfer
    Du, Yunshu
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2405 - 2407
  • [18] Efficient Halftoning via Deep Reinforcement Learning
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Ding, Li
    Chen, Liang
    Huang, Kai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5494 - 5508
  • [19] Deep inverse reinforcement learning for structural evolution of small molecules
    Agyemang, Brighter
    Wu, Wei-Ping
    Addo, Daniel
    Kpiebaareh, Michael Y.
    Nanor, Ebenezer
    Haruna, Charles Roland
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [20] Energy-Based Legged Robots Terrain Traversability Modeling via Deep Inverse Reinforcement Learning
    Gan, Lu
    Grizzle, Jessy W.
    Eustice, Ryan M.
    Ghaffari, Maani
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04): : 8807 - 8814