Non-isothermal crystallization kinetics of polypropylene/poly(lactic acid)/maleic anhydride-grafted polypropylene blends

被引:21
|
作者
Bai, Zhi-fei [1 ]
Dou, Qiang [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
关键词
Polypropylene; Poly(lactic acid); Maleic anhydride-grafted polypropylene; Blend; Non-isothermal crystallization kinetics; POLY-LACTIC-ACID; NUCLEATED ISOTACTIC POLYPROPYLENE; LOW-DENSITY POLYETHYLENE; MECHANICAL-PROPERTIES; ISOTHERMAL CRYSTALLIZATION; SPHERULITIC MORPHOLOGY; MELTING BEHAVIOR; PHASE-CHANGE; GROWTH-RATE; NANOCOMPOSITES;
D O I
10.1007/s10973-016-5554-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
The non-isothermal crystallization kinetics of neat polypropylene (PP), PP/poly(lactic acid) (PLA) blend and PP/PLA/maleic anhydride-grafted polypropylene (MAH-g-PP) blend were investigated by means of differential scanning calorimetry. Jeziorny's and Mo's models were employed to analyze the non-isothermal crystallization kinetics. The nucleation parameters (K (g)) and activation energies (Delta E) of non-isothermal crystallization were calculated by the modified Lauritzen-Hoffman equation and Kissinger's equation, respectively. The results show that Jeziorny's and Mo's models are suitable for describing the non-isothermal crystallization kinetics of the samples. PP/PLA (80/20) blend shows the fastest crystallization rate due to the nucleation effect of the dispersed PLA particles in PP matrix. However, the crystallization of PP in the blend is restricted by the incorporation of the MAH-g-PP. The K (g) and Delta E are in the order: PP/PLA/MAH-g-PP (64/20/16) blend > neat PP > PP/PLA (80/20) blend.
引用
收藏
页码:785 / 794
页数:10
相关论文
共 50 条
  • [31] Non-isothermal crystallization, melting behavior and polymorphism of polypropylene in β-nucleated polypropylene/recycled poly(ethylene terephthalate) blends
    Tao, Youji
    Pan, Yongxing
    Zhang, Zishou
    Mai, Kancheng
    EUROPEAN POLYMER JOURNAL, 2008, 44 (04) : 1165 - 1174
  • [32] Non-Isothermal Crystallization Kinetics of Poly(Lactic Acid)/Kenaf Fiber Composites
    Borhan, Adibah
    Taib, Razaina Mat
    SAINS MALAYSIANA, 2020, 49 (09): : 2169 - 2185
  • [33] Non-isothermal crystallization behavior of polypropylene grafted polyurethane
    Liu, YQ
    Zhu, YF
    Xu, JR
    ACTA POLYMERICA SINICA, 2002, (05) : 577 - 581
  • [34] Maleic anhydride-grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites
    Issaadi, Kahina
    Habi, Abderrahmane
    Grohens, Yves
    Pillin, Isabelle
    POLYMER BULLETIN, 2016, 73 (07) : 2057 - 2071
  • [35] Maleic anhydride-grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites
    Kahina Issaadi
    Abderrahmane Habi
    Yves Grohens
    Isabelle Pillin
    Polymer Bulletin, 2016, 73 : 2057 - 2071
  • [36] Non-isothermal crystallization kinetics assessment of poly(lactic acid)/graphene nanocomposites
    Manafi, Pedram
    Ghasemi, Ismaeil
    Manafi, Mohammad Reza
    Ehsaninamin, Parvin
    Asl, Farzaneh Hassanpour
    IRANIAN POLYMER JOURNAL, 2017, 26 (05) : 377 - 389
  • [37] Effect of functionalization on non-isothermal crystallization behavior of polypropylene
    Xia, Xu-Feng
    Zhang, Jun-Hui
    Fan, Jia-Ming
    Jiang, Qian-Lu
    Xu, Shi-Ai
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2016, 21 (08) : 697 - 707
  • [38] Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites
    Ferreira, C. I.
    Dal Castel, C.
    Oviedo, M. A. S.
    Mauler, R. S.
    THERMOCHIMICA ACTA, 2013, 553 : 40 - 48
  • [39] Kinetics for chlorination of maleic anhydride grafted polypropylene
    Fu, He-Qing
    Huang, Hong
    Zhang, Xin-Ya
    Ye, Dai-Yong
    Chen, Huan-Qin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 106 (01) : 117 - 121
  • [40] Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites
    Dai, Xin
    Zhang, Zishou
    Chen, Chunyan
    Li, Mei
    Tan, Yunhong
    Mai, Kancheng
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 121 (02) : 829 - 838