Virtual element methods;
arbitrarily regular conforming approximation spaces;
second- and higher-order elliptic PDEs;
DISCONTINUOUS GALERKIN METHODS;
VERSION;
MESHES;
FAMILY;
D O I:
10.1142/S0218202521500627
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The virtual element method is well suited to the formulation of arbitrarily regular Galerkin approximations of elliptic partial differential equations of order 2p(1), for any integer p(1) >= 1. In fact, the virtual element paradigm provides a very effective design framework for conforming, finite dimensional subspaces of H-p2(Omega), Omega being the computational domain and p(2) >= p(1) another suitable integer number. In this review, we first present an abstract setting for such highly regular approximations and discuss the mathematical details of how we can build conforming approximation spaces with a global high-order regularity on Omega. Then, we illustrate specific examples in the case of second- and fourth-order partial differential equations, that correspond to the cases p(1) = 1 and 2, respectively. Finally, we investigate numerically the effect on the approximation properties of the conforming highly-regular method that results from different choices of the degree of continuity of the underlying virtual element spaces and how different stabilization strategies may impact on convergence.
机构:
Politecn Milan, Dipartimento Matemat, MOX, Milan, ItalyPolitecn Milan, Dipartimento Matemat, MOX, Milan, Italy
Antonietti, P. F.
;
Manzini, G.
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, T Grp 5, Theoret Div, Los Alamos, NM USA
CNR, Ist Matemat Applicata & Tecnol Informat, Pavia, ItalyPolitecn Milan, Dipartimento Matemat, MOX, Milan, Italy
Manzini, G.
;
Verani, M.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, MOX, Milan, Italy
CNR, Ist Matemat Applicata & Tecnol Informat, Pavia, ItalyPolitecn Milan, Dipartimento Matemat, MOX, Milan, Italy
机构:
Politecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Antonietti, P. F.
;
Da Veiga, L. Beirao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Da Veiga, L. Beirao
;
Scacchi, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Scacchi, S.
;
Verani, M.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
机构:
Politecn Milan, Dipartimento Matemat, MOX, Milan, ItalyPolitecn Milan, Dipartimento Matemat, MOX, Milan, Italy
Antonietti, P. F.
;
Manzini, G.
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, T Grp 5, Theoret Div, Los Alamos, NM USA
CNR, Ist Matemat Applicata & Tecnol Informat, Pavia, ItalyPolitecn Milan, Dipartimento Matemat, MOX, Milan, Italy
Manzini, G.
;
Verani, M.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, MOX, Milan, Italy
CNR, Ist Matemat Applicata & Tecnol Informat, Pavia, ItalyPolitecn Milan, Dipartimento Matemat, MOX, Milan, Italy
机构:
Politecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Antonietti, P. F.
;
Da Veiga, L. Beirao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Da Veiga, L. Beirao
;
Scacchi, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Scacchi, S.
;
Verani, M.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, ItalyPolitecn Milan, MOX Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy