A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations

被引:17
作者
Antonietti, Paola F. [1 ]
Manzini, Gianmarco [2 ]
Scacchi, Simone [3 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, Milan, Italy
[2] CNR, IMATI, Pavia, Italy
[3] Univ Milan, Dipartimento Matemat, Milan, Italy
基金
欧洲研究理事会;
关键词
Virtual element methods; arbitrarily regular conforming approximation spaces; second- and higher-order elliptic PDEs; DISCONTINUOUS GALERKIN METHODS; VERSION; MESHES; FAMILY;
D O I
10.1142/S0218202521500627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The virtual element method is well suited to the formulation of arbitrarily regular Galerkin approximations of elliptic partial differential equations of order 2p(1), for any integer p(1) >= 1. In fact, the virtual element paradigm provides a very effective design framework for conforming, finite dimensional subspaces of H-p2(Omega), Omega being the computational domain and p(2) >= p(1) another suitable integer number. In this review, we first present an abstract setting for such highly regular approximations and discuss the mathematical details of how we can build conforming approximation spaces with a global high-order regularity on Omega. Then, we illustrate specific examples in the case of second- and fourth-order partial differential equations, that correspond to the cases p(1) = 1 and 2, respectively. Finally, we investigate numerically the effect on the approximation properties of the conforming highly-regular method that results from different choices of the degree of continuity of the underlying virtual element spaces and how different stabilization strategies may impact on convergence.
引用
收藏
页码:2825 / 2853
页数:29
相关论文
共 74 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   Phase-field modeling of brittle fracture using an efficient virtual element scheme [J].
Aldakheel, Fadi ;
Hudobivnik, Blaz ;
Hussein, Ali ;
Wriggers, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 :443-466
[3]   A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac electrophysiology [J].
Anaya, Veronica ;
Bendahmane, Mostafa ;
Mora, David ;
Sepulveda, Mauricio .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) :1544-1576
[4]  
[Anonymous], 2020, MATLAB, Version 9.8.0 (R2020a)
[5]   The conforming virtual element method for polyharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) :2021-2034
[6]   The fully nonconforming virtual element method for biharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) :387-407
[7]   On the virtual element method for topology optimization on polygonal meshes: A numerical study [J].
Antonietti, P. F. ;
Bruggi, M. ;
Scacchi, S. ;
Verani, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) :1091-1109
[8]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[9]   The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis [J].
Antonietti, Paola F. ;
Manzini, Gianmarco ;
Mazzieri, Ilario ;
Mourad, Hashem M. ;
Verani, Marco .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (04) :934-971
[10]   A MULTIGRID ALGORITHM FOR THE p-VERSION OF THE VIRTUAL ELEMENT METHOD [J].
Antonietti, Paola F. ;
Mascotto, Lorenzo ;
Verani, Marco .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2018, 52 (01) :337-364