An overview of artificial intelligence in oncology

被引:50
作者
Farina, Eduardo [1 ,2 ]
Nabhen, Jacqueline J. [3 ]
Dacoregio, Maria Inez [4 ]
Batalini, Felipe [5 ]
Moraes, Fabio Y. [6 ]
机构
[1] Univ Fed Sao Paulo, Dept Radiol, BR-04021001 Sao Paulo, SP, Brazil
[2] Diagnost Amer SA Dasa, BR-05425020 Sao Paulo, Brazil
[3] Univ Fed Parana, Sch Med, BR-80060000 Curitiba, Parana, Brazil
[4] State Univ Ctr Oeste, Sch Med, BR-85040167 Guarapuava, PR, Brazil
[5] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Med, Div Med Oncol, Boston, MA 02215 USA
[6] Queens Univ, Dept Oncol, Div Radiat Oncol, Kingston, ON K7L 3N6, Canada
关键词
artificial intelligence; cancer diagnosis; data integration; medical oncology; patient stratification; precision oncology; CANCER; CHALLENGES; PREDICTION; MODEL;
D O I
10.2144/fsoa-2021-0074
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cancer is associated with significant morbimortality globally. Advances in screening, diagnosis, management and survivorship were substantial in the last decades, however, challenges in providing personalized and data-oriented care remain. Artificial intelligence (AI), a branch of computer science used for predictions and automation, has emerged as potential solution to improve the healthcare journey and to promote precision in healthcare. AI applications in oncology include, but are not limited to, optimization of cancer research, improvement of clinical practice (eg., prediction of the association of multiple parameters and outcomes - prognosis and response) and better understanding of tumor molecular biology. In this review, we examine the current state of AI in oncology, including fundamentals, current applications, limitations and future perspectives.
引用
收藏
页数:13
相关论文
共 93 条
[1]   The Increasing Incidence of Young-Onset Colorectal Cancer: A Call to Action [J].
Ahnen, Dennis J. ;
Wade, Sally W. ;
Jones, Whitney F. ;
Sifri, Randa ;
Silveiras, Jose Mendoza ;
Greenamyer, Jasmine ;
Guiffre, Stephanie ;
Axilbund, Jennifer ;
Spiegel, Andrew ;
You, Y. Nancy .
MAYO CLINIC PROCEEDINGS, 2014, 89 (02) :216-224
[2]  
AI, 2019, GLOSSARY TERMS, DOI [10.1007/978-3-319-94878-2, DOI 10.1007/978-3-319-94878-2]
[3]  
Angeles L., 2020, HHS PUBLIC ACCESS, V220, P1
[4]  
[Anonymous], 2021, HEMATOLOGYONCOLOGY C
[5]  
Artemov A.V., 2016, Biochem
[6]   Radiomics and deep learning in lung cancer [J].
Avanzo, Michele ;
Stancanello, Joseph ;
Pirrone, Giovanni ;
Sartor, Giovanna .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (10) :879-887
[7]   Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation [J].
Bae, Sohi ;
An, Chansik ;
Ahn, Sung Soo ;
Kim, Hwiyoung ;
Han, Kyunghwa ;
Kim, Sang Wook ;
Park, Ji Eun ;
Kim, Ho Sung ;
Lee, Seung-Koo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Translating Artificial Intelligence Into Clinical Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2368-2369
[9]   Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center [J].
Beck, J. Thaddeus ;
Rammage, Melissa ;
Jackson, Gretchen P. ;
Preininger, Anita M. ;
Dankwa-Mullan, Irene ;
Roebuck, M. Christopher ;
Torres, Adam ;
Holtzen, Helen ;
Coverdill, Sadie E. ;
Williamson, M. Paul ;
Chau, Quincy ;
Rhee, Kyu ;
Vinegra, Michael .
JCO CLINICAL CANCER INFORMATICS, 2020, 4 :50-59
[10]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157