Semi-supervised internet network traffic classification using a Gaussian mixture model

被引:14
|
作者
Qian, Feng [1 ]
Hu, Guang-min
Yao, Xing-miao
机构
[1] Univ Elect Sci & Technol China, Key Lab Broadband Opt Fiber Transmiss, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
internet traffic/flows classification; semi-supervised classification; Gaussian mixture model (GMM); optimum configuration;
D O I
10.1016/j.aeue.2007.07.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With a dramatic increase in the number and variety of applications running over the internet, it is very important to be capable of dynamically identifying and classifying flows/traffic according to their network applications. Meanwhile, internet application classification is fundamental to numerous network activities. In this paper, we present a novel methodology for identifying different internet applications. The major contributions are: (1) we propose a Gaussian mixture model (GMM)-based semi-supervised classification system to identify different internet applications; (2) we achieve an optimum configuration for the GMM-based semi-supervised classification system. The effectiveness of these proposed approaches is demonstrated through experimental results. (C) 2007 Elsevier GmbH. All rights reserved.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 50 条
  • [1] Semi-Supervised Network Traffic Classification
    Erman, Jeffrey
    Mahanti, Anirban
    Arlitt, Martin
    Cohen, Ira
    Williamson, Carey
    SIGMETRICS'07: PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON MEASUREMENT & MODELING OF COMPUTER SYSTEMS, 2007, 35 (01): : 369 - 370
  • [2] Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery
    Biao Xiong
    XiaoJun Zhang
    WanShou Jiang
    Science China Technological Sciences, 2010, 53 : 85 - 90
  • [3] Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery
    XIONG Biao1
    2 State Key Laboratory of Remote Sensing Science
    Science China Technological Sciences, 2010, (S1) : 85 - 90
  • [4] Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery
    Xiong Biao
    Zhang XiaoJun
    Jiang WanShou
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 : 85 - 90
  • [5] Semi-supervised and compound classification of network traffic
    Zhang, J. (jun.zhang@deakin.edu.au), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (07):
  • [6] A multi-manifold semi-supervised Gaussian mixture model for pattern classification
    Xing, Xianglei
    Yu, Yao
    Jiang, Hua
    Du, Sidan
    PATTERN RECOGNITION LETTERS, 2013, 34 (16) : 2118 - 2125
  • [7] Manifold regularized semi-supervised Gaussian mixture model
    Gan, Haitao
    Sang, Nong
    Huang, Rui
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (04) : 566 - 575
  • [8] Network traffic classification based on semi-supervised clustering
    Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
    不详
    不详
    不详
    J. China Univ. Post Telecom., SUPPL. 2 (84-88):
  • [9] A Novel Approach for Semi-Supervised Network Traffic Classification
    Huo, Yonghua
    Song, Chunxiao
    Zhou, Meichao
    Lv, Rui
    Yang, Yang
    2022 IEEE 14TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT 2022), 2022, : 64 - 69
  • [10] A Semi-supervised Approach to Detect Malicious Nodes in OBS Network Dataset Using Gaussian Mixture Model
    Patwary, Muhammad Kamrul Hossain
    Haque, Md Mokammel
    INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019, 2020, 89 : 707 - 719