TiO2 nanotube structures for the enhancement of photon utilization in sensitized solar cells

被引:12
作者
Lin, Jia [1 ,2 ]
Liu, Xiaolin [1 ]
Zhu, Shu [1 ]
Chen, Xianfeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys & Astron, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Shanghai Univ Elect Power, Dept Phys, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
light harvesting; light scattering; microstructure; photonic crystal; TiO2; nanotubes; POROUS ANODIC ALUMINUM; POWER-CONVERSION EFFICIENCY; TITANIA NANOTUBES; LIGHT-SCATTERING; QUANTUM DOTS; PHOTOVOLTAIC PERFORMANCE; NANOCRYSTALLINE TIO2; FACILE FABRICATION; OPTICAL-PROPERTIES; CHARGE-TRANSPORT;
D O I
10.1515/ntrev-2014-0028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The nano-and microstructures of titanium dioxide (TiO2) photoanodes in photovoltaic cells have a large impact on their photon to electron performances, including light harvesting, photogenerated electron separation, transport and recombination. This review will focus on anodic TiO2 nanotubes (NTs) for the enhancement of photon conversion or light harvesting when incorporated in sensitized solar cells, which is valuable for increased photocurrent densities and solar cell efficiencies. By modulating the electrochemical processes which have a great impact on TiO2 NT geometry, excellent optical properties can be achieved, resulting in the enhanced absorption of incident light and reduced light loss via reflection, penetration or transformation. The results indicate that the control of structures and morphologies of TiO2 NTs is critical to the optimization of their applications in sensitized solar cells.
引用
收藏
页码:209 / 238
页数:30
相关论文
共 272 条
[1]   Optimized Ti polishing techniques for enhanced order in TiO2 NT arrays [J].
Albertin, K. F. ;
Tavares, A. ;
Pereyra, I. .
APPLIED SURFACE SCIENCE, 2013, 284 :772-779
[2]   TiO2 nanotube layers: Flexible and electrically active flow-through membranes [J].
Albu, Sergiu P. ;
Ghicov, Andrei ;
Berger, Steffen ;
Jha, Himendra ;
Schmuki, Patrik .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1352-1355
[3]   Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace [J].
Albu, Sergiu R. ;
Kim, Doohun ;
Schmuki, Patrik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (10) :1916-1919
[4]  
[Anonymous], ANGEW CHEM
[5]   Direct laser writing [J].
Anscombe, Nadya .
NATURE PHOTONICS, 2010, 4 (01) :22-23
[6]   The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism [J].
Apolinario, A. ;
Sousa, C. T. ;
Ventura, J. ;
Costa, J. D. ;
Leitao, D. C. ;
Moreira, J. M. ;
Sousa, J. B. ;
Andrade, L. ;
Mendes, A. M. ;
Araujo, J. P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) :9067-9078
[7]   Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method [J].
Arunchandran, C. ;
Ramya, S. ;
George, R. P. ;
Mudali, U. Kamachi .
MATERIALS RESEARCH BULLETIN, 2013, 48 (02) :635-639
[8]   Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J].
Baker, David R. ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :805-811
[9]   Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array [J].
Bavykin, Dmitry V. ;
Passoni, Luca ;
Walsh, Frank C. .
CHEMICAL COMMUNICATIONS, 2013, 49 (62) :7007-7009
[10]   Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20% [J].
Beiley, Zach M. ;
McGehee, Michael D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9173-9179