共 50 条
Tailored design of renewable copolymers based on poly(1,4-butylene 2,5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties
被引:54
|作者:
Sousa, A. F.
[1
,2
,3
]
Guigo, N.
[4
]
Pozycka, M.
[1
,2
]
Delgado, M.
[1
,2
]
Soares, J.
[1
,2
]
Mendonca, P. V.
[3
]
Coelho, J. F. J.
[3
]
Sbirrazzuoli, N.
[4
]
Silvestre, A. J. D.
[1
,2
]
机构:
[1] Univ Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Chem, P-3810193 Aveiro, Portugal
[3] Univ Coimbra, Dept Chem Engn, CEMMPRE, P-3030790 Coimbra, Portugal
[4] Univ Cote dAzur, Inst Chim Nice, UMR 7272, CNRS, F-06100 Nice, France
关键词:
RING-OPENING POLYMERIZATION;
PHYSICAL-PROPERTIES;
POLY(BUTYLENE 2,5-FURANDICARBOXYLATE);
ALIPHATIC POLYESTERS;
BLOCK-COPOLYMERS;
DEGRADATION;
RESOURCES;
COPOLYESTERS;
POLYMERS;
ACID;
D O I:
10.1039/c7py01627a
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
In the recent years, search for innovative polymers derived from renewable resources resulted in an intense research and development of 2,5-furandicarboxylic acid-based polyesters. Special emphasis has been placed in high-performance polyesters, such as the poly(1,4-butylene 2,5-furandicarboxylate) (PBF)-based structures. In this study, both thermal and crystallisation-thermal properties of PBF have been enlarged simply by the incorporation of other renewable soft moieties in the polymer structure, namely, poly(ethylene glycol) (PEG) moieties. In particular, these novel copolymers can be designed to show some advantageous processing features as revealed by the lower melting temperature (in particular, it could be 107 degrees C) and higher thermal stability (up to 352-380 degrees C) as compared with PBF. Moreover, fast scanning calorimetric (FSC) studies of these novel copolymers indicated that crystallisation could be prevented even using relatively slow cooling rates (e.g., 0.1 degrees C s(-1)). The judicious selection and balance between hard PBF and soft PEG units enabled a segmented copolymer behaviour.
引用
收藏
页码:722 / 731
页数:10
相关论文