Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary

被引:7
作者
Agranovich, M. S. [1 ]
机构
[1] Moscow Inst Elect & Math, Moscow 109028, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1061920808020027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note, we propose to remove some small gaps in the theory of potential spaces H-p(s)(Omega) and Besov spaces B-p(s)(Omega), 1 < p < infinity, s epsilon R, for a bounded Lipschitz domain Omega subset of R-n, n >= 2. Namely, we discuss 1) the unified definitions of these spaces with s of any sign, the unified duality theorems and interpolation relations, 2) the possibility of constructing a function in these spaces with given array of traces of its derivatives on the boundary.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 18 条
  • [1] The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains
    Adolfsson, V
    Pipher, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) : 137 - 190
  • [2] Agranovich MS, 2006, OPER THEOR, V164, P1
  • [3] Agranovich M. S., 2007, FUNKTSIONAL ANAL PRI, V41, p[1, 247], DOI DOI 10.4213/faa2875
  • [4] AGRANOVICH MS, 2006, FUNKTSIONAL ANAL PRI, V40, P83
  • [5] Berg J., 1976, INTERPOLATION SPACES
  • [6] HORMANDER L, 1995, ANAL LINEAR PARTIAL, V3
  • [7] THE INHOMOGENEOUS DIRICHLET PROBLEM IN LIPSCHITZ-DOMAINS
    JERISON, D
    KENIG, CE
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) : 161 - 219
  • [8] MAZYA V, 2007, AP0701898V1 ARXIV MA
  • [9] Muramatu T., 1974, Publ. RIMS Kyoto Univ., V9, P325
  • [10] Peetre J, 1976, Duke Univ. Math. Ser.