Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation

被引:90
作者
Ren, Bo [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ,5 ,6 ]
Yu, Jun [1 ]
机构
[1] Shaoxing Univ, Inst Nonlinear Sci, Shaoxing 312000, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[5] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[6] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
Nonlinear partial differential equation; Hirota bilinear form; Solitary wave; Lump wave; Interaction solution; MODULATIONAL INSTABILITY; DISCRETE BREATHERS; STRIPE SOLITONS; JIMBO-MIWA; LATTICE;
D O I
10.1007/s11071-019-04816-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A (2 + 1)-dimensional coupled nonlinear partial equation which possesses a Hirota bilinear form is introduced. Based on the Hirota bilinear form, two solitary waves are constructed. In the meanwhile, lump waves are derived by using a positive quadratic function. By combining an exponential function with a quadratic function, interaction solutions between a lump and a one-kink soliton, and between a bi-lump and a one-soliton solution are generated. Some special concrete interaction solutions are depicted in both analytical and graphical ways.
引用
收藏
页码:717 / 727
页数:11
相关论文
共 46 条
[1]   A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced (3+1)-Dimensional Nonlinear Evolution Equation [J].
Chen, Mei-Dan ;
Li, Xian ;
Wang, Yao ;
Li, Biao .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 67 (06) :595-600
[2]   Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) :525-534
[3]   Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev-Petviashvili equation [J].
Dai, Zhengde ;
Liu, Jun ;
Liu, Zhenjiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (09) :2331-2336
[4]   Soliton solutions in nonlocal nonlinear coupler [J].
Dang, Ya-Lin ;
Li, Hui-Jun ;
Lin, Ji .
NONLINEAR DYNAMICS, 2017, 88 (01) :489-501
[5]   Characteristics of the Lumps and Stripe Solitons with Interaction Phenomena in the (2+1)-Dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada Equation [J].
Deng, Zhi-Hao ;
Chang, Xia ;
Tan, Jia-Ning ;
Tang, Bing ;
Deng, Ke .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (01) :92-102
[6]   Breathers and rogue waves in a ferromagnetic thin film with the Dzyaloshinskii-Moriya interaction [J].
Deng, Zhi-Hao ;
Wu, Tianle ;
Tang, Bing ;
Wang, Xiao-Yun ;
Zhao, He-Ping ;
Deng, Ke .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (11)
[7]   Modulational instability and discrete breathers in a nonlinear helicoidal lattice model [J].
Ding, Jinmin ;
Wu, Tianle ;
Chang, Xia ;
Tang, Bing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :349-358
[8]   On an algorithmic construction of lump solutions in a 2+1 integrable equation [J].
Estevez, P. G. ;
Prada, J. ;
Villarroel, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (26) :7213-7231
[9]   Lump solitons in a higher-order nonlinear equation in 2+1 dimensions [J].
Estevez, P. G. ;
Diaz, E. ;
Dominguez-Adame, F. ;
Cervero, Jose M. ;
Diez, E. .
PHYSICAL REVIEW E, 2016, 93 (06)
[10]   Observation of depression solitary surface waves on a thin fluid layer -: art. no. 204501 [J].
Falcon, É ;
Laroche, C ;
Fauve, S .
PHYSICAL REVIEW LETTERS, 2002, 89 (20) :204501-204501