Robust Parameter Estimation for Photovoltaic Array Model under Partial Shading Condition

被引:1
作者
Zheng, Yinyan [1 ]
Zhang, Zhengjiang [1 ]
Wu, Ping [1 ]
Hu, Guiting [1 ]
Dai, Yuxing [1 ]
机构
[1] Wenzhou Univ, Natl & Local Joint Engn Lab Elect Digital Design, Wenzhou 325000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PV array; parameter estimation; partial shading condition; gross error; robust estimator; PV MODULES; SINGLE; IDENTIFICATION; SYSTEM;
D O I
10.1002/tee.23591
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Modeling the photovoltaic (PV) array can analyze the influence of temperature, irradiance, and other factors on the I-V characteristic curve. The model can be used to replace the actual PV array to implement various PV experiments for reducing experimental costs and saving experimental time. Parameter estimation can make the parameters of the PV array model more accurate and make the outputs of model consistent with the outputs of the actual device. This work focuses on PV array under partial shading condition problems. The main contribution is to use different types of robust estimators for parameter estimation and present a comparative analysis of the traditional weighted least squares (WLS) estimator and eight robust estimators, including the Quasi-weighted least squares (QWLS) estimator, Correntropy, etc. The performance of these estimators is analyzed in the simulation, where both random errors and gross errors are considered. The results showed that the robust estimators have better performance than the traditional WLS estimator especially when the measurement data contain gross errors. The robust estimators can be used in the parameter estimation for PV array model to estimate the accurate parameters. (c) 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
引用
收藏
页码:1016 / 1026
页数:11
相关论文
共 26 条
[1]   A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances [J].
Carrero, C. ;
Amador, J. ;
Arnaltes, S. .
RENEWABLE ENERGY, 2007, 32 (15) :2579-2589
[2]   A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control [J].
Chauhan, Anurag ;
Saini, R. P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 :99-120
[3]   Correntropy estimator for data reconciliation [J].
Chen, Junghui ;
Peng, Yungchih ;
Munoz, Jose Co .
CHEMICAL ENGINEERING SCIENCE, 2013, 104 :1019-1027
[4]  
Cunha ASD., 2021, COMPUT CHEM ENG, V145, P1
[5]  
Di Piazza M.C., 2010, Renew. Energy Power Qual. J., V1, P1410, DOI [10.24084/repqj08.679, DOI 10.24084/REPQJ08.679]
[6]   Dynamic PV Model Parameter Identification by Least-Squares Regression [J].
Di Piazza, Maria Carmela ;
Luna, Massimiliano ;
Vitale, Gianpaolo .
IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (02) :799-806
[7]  
Efstratios B., 2014, IET RENEW POWER GEN, V9, P340
[8]  
Hampel Frank R, 2011, Robust Statistics: The Approach Based on Influence Functions, V196
[9]   Solar cell parameters extraction based on single and double-diode models: A review [J].
Hurnada, Ali M. ;
Hojabri, Mojgan ;
Mekhilef, Saad ;
Hamada, Hussein M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :494-509
[10]  
Jian X., 2015, ACTA PHOTONICA SINIC, V44, P168