Mathematical Models and Numerical Methods for Spinor Bose-Einstein Condensates

被引:40
作者
Bao, Weizhu [1 ]
Cai, Yongyong [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Beijing Computat Sci Res Ctr, 10 East Xibeiwang Rd, Beijing 100193, Peoples R China
关键词
Bose-Einstein condensate; Gross-Pitaeskii equation; spin-orbit; spin-1; spin-2; ground state; dynamics; numerical methods; GROSS-PITAEVSKII EQUATION; COMPUTING GROUND-STATES; NONLINEAR SCHRODINGER-EQUATIONS; HERMITE-PSEUDOSPECTRAL-METHOD; MANY-BODY PHYSICS; COMPUTATIONAL METHODS; GRADIENT-METHOD; EXCITED-STATES; QUANTUM-THEORY; NOBEL LECTURE;
D O I
10.4208/cicp.2018.hh80.14
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we systematically review mathematical models, theories and numerical methods for ground states and dynamics of spinor Bose-Einstein condensates (BECs) based on the coupled Gross-Pitaevskii equations (GPEs). We start with a pseudo spin-1/2 BEC system with/without an internal atomic Josephson junction and spin-orbit coupling including (i) existence and uniqueness as well as non-existence of ground states under different parameter regimes, (ii) ground state structures under different limiting parameter regimes, (iii) dynamical properties, and (iv) efficient and accurate numerical methods for computing ground states and dynamics. Then we extend these results to spin-1 BEC and spin-2 BEC. Finally, extensions to dipolar spinor systems and/or general spin-F (F >= 3) BEC are discussed.
引用
收藏
页码:899 / 965
页数:67
相关论文
共 146 条
[21]   A SIMPLE AND EFFICIENT NUMERICAL METHOD FOR COMPUTING THE DYNAMICS OF ROTATING BOSE-EINSTEIN CONDENSATES VIA ROTATING LAGRANGIAN COORDINATES [J].
Bao, Weizhu ;
Marahrens, Daniel ;
Tang, Qinglin ;
Zhang, Yanzhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2671-A2695
[22]   Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations [J].
Bao, Weizhu ;
Chern, I-Liang ;
Zhang, Yanzhi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 :189-208
[23]   Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrodinger equation [J].
Bao, Weizhu ;
Tang, Qinglin ;
Xu, Zhiguo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :423-445
[24]   OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION [J].
Bao, Weizhu ;
Cai, Yongyong .
MATHEMATICS OF COMPUTATION, 2013, 82 (281) :99-128
[25]   MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION [J].
Bao, Weizhu ;
Cai, Yongyong .
KINETIC AND RELATED MODELS, 2013, 6 (01) :1-135
[26]   GROSS-PITAEVSKII-POISSON EQUATIONS FOR DIPOLAR BOSE-EINSTEIN CONDENSATE WITH ANISOTROPIC CONFINEMENT [J].
Bao, Weizhu ;
Ben Abdallah, Naoufel ;
Cai, Yongyong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) :1713-1741
[27]  
Bao WZ, 2010, METHODS APPL ANAL, V17, P49
[28]   Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction [J].
Bao, Weizhu ;
Cai, Yongyong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2011, 1 (01) :49-81
[29]   Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates [J].
Bao, Weizhu ;
Cai, Yongyong ;
Wang, Hanquan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) :7874-7892
[30]   A GENERALIZED-LAGUERRE-FOURIER-HERMITE PSEUDOSPECTRAL METHOD FOR COMPUTING THE DYNAMICS OF ROTATING BOSE-EINSTEIN CONDENSATES [J].
Bao, Weizhu ;
Li, Hailiang ;
Shen, Jie .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) :3685-3711