Mathematical Models and Numerical Methods for Spinor Bose-Einstein Condensates

被引:40
作者
Bao, Weizhu [1 ]
Cai, Yongyong [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Beijing Computat Sci Res Ctr, 10 East Xibeiwang Rd, Beijing 100193, Peoples R China
关键词
Bose-Einstein condensate; Gross-Pitaeskii equation; spin-orbit; spin-1; spin-2; ground state; dynamics; numerical methods; GROSS-PITAEVSKII EQUATION; COMPUTING GROUND-STATES; NONLINEAR SCHRODINGER-EQUATIONS; HERMITE-PSEUDOSPECTRAL-METHOD; MANY-BODY PHYSICS; COMPUTATIONAL METHODS; GRADIENT-METHOD; EXCITED-STATES; QUANTUM-THEORY; NOBEL LECTURE;
D O I
10.4208/cicp.2018.hh80.14
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we systematically review mathematical models, theories and numerical methods for ground states and dynamics of spinor Bose-Einstein condensates (BECs) based on the coupled Gross-Pitaevskii equations (GPEs). We start with a pseudo spin-1/2 BEC system with/without an internal atomic Josephson junction and spin-orbit coupling including (i) existence and uniqueness as well as non-existence of ground states under different parameter regimes, (ii) ground state structures under different limiting parameter regimes, (iii) dynamical properties, and (iv) efficient and accurate numerical methods for computing ground states and dynamics. Then we extend these results to spin-1 BEC and spin-2 BEC. Finally, extensions to dipolar spinor systems and/or general spin-F (F >= 3) BEC are discussed.
引用
收藏
页码:899 / 965
页数:67
相关论文
共 146 条
[91]   Bose-Einstein condensation in the alkali gases: Some fundamental concepts [J].
Leggett, AJ .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :307-356
[92]   Quantum Tricriticality and Phase Transitions in Spin-Orbit Coupled Bose-Einstein Condensates [J].
Li, Yun ;
Pitaevskii, Lev P. ;
Stringari, Sandro .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[93]   Ground state energy of the two-component charged Bose gas [J].
Lieb, EH ;
Solovej, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 252 (1-3) :485-534
[94]   Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional [J].
Lieb, EH ;
Seiringer, R ;
Yngvason, J .
PHYSICAL REVIEW A, 2000, 61 (04) :13-436021
[95]   Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field [J].
Lim, Fong Yin ;
Bao, Weizhu .
PHYSICAL REVIEW E, 2008, 78 (06)
[96]   A KINETIC ENERGY REDUCTION TECHNIQUE AND CHARACTERIZATIONS OF THE GROUND STATES OF SPIN-1 BOSE-EINSTEIN CONDENSATES [J].
Lin, Liren ;
Chern, I-Liang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (04) :1119-1128
[97]   Ground state of N coupled nonlinear Schrodinger equations in Rn, n ≤ 3 [J].
Lin, TC ;
Wei, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (03) :629-653
[98]   Spin-orbit-coupled Bose-Einstein condensates [J].
Lin, Y. -J. ;
Jimenez-Garcia, K. ;
Spielman, I. B. .
NATURE, 2011, 471 (7336) :83-U99
[99]   The lambda-phenomenon of liquid helium and the Bose-Einstein degeneracy [J].
London, F .
NATURE, 1938, 141 :643-644
[100]   NOTE ON THE GROUND STATES OF TWO-COMPONENT BOSE-EINSTEIN CONDENSATES WITH AN INTERNAL ATOMIC JOSEPHSON JUNCTION [J].
Lu, Zhongxue ;
Liu, Zuhan .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) :1441-1450