Mathematical Models and Numerical Methods for Spinor Bose-Einstein Condensates

被引:40
作者
Bao, Weizhu [1 ]
Cai, Yongyong [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Beijing Computat Sci Res Ctr, 10 East Xibeiwang Rd, Beijing 100193, Peoples R China
关键词
Bose-Einstein condensate; Gross-Pitaeskii equation; spin-orbit; spin-1; spin-2; ground state; dynamics; numerical methods; GROSS-PITAEVSKII EQUATION; COMPUTING GROUND-STATES; NONLINEAR SCHRODINGER-EQUATIONS; HERMITE-PSEUDOSPECTRAL-METHOD; MANY-BODY PHYSICS; COMPUTATIONAL METHODS; GRADIENT-METHOD; EXCITED-STATES; QUANTUM-THEORY; NOBEL LECTURE;
D O I
10.4208/cicp.2018.hh80.14
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we systematically review mathematical models, theories and numerical methods for ground states and dynamics of spinor Bose-Einstein condensates (BECs) based on the coupled Gross-Pitaevskii equations (GPEs). We start with a pseudo spin-1/2 BEC system with/without an internal atomic Josephson junction and spin-orbit coupling including (i) existence and uniqueness as well as non-existence of ground states under different parameter regimes, (ii) ground state structures under different limiting parameter regimes, (iii) dynamical properties, and (iv) efficient and accurate numerical methods for computing ground states and dynamics. Then we extend these results to spin-1 BEC and spin-2 BEC. Finally, extensions to dipolar spinor systems and/or general spin-F (F >= 3) BEC are discussed.
引用
收藏
页码:899 / 965
页数:67
相关论文
共 146 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms [J].
Adhikari, SK .
PHYSICS LETTERS A, 2000, 265 (1-2) :91-96
[3]   Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime [J].
Aftalion, A ;
Du, Q .
PHYSICAL REVIEW A, 2001, 64 (06) :1-11
[4]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[5]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[6]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[7]   Efficient spectral computation of the stationary states ofrotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods [J].
Antoine, Xavier ;
Levitt, Antoine ;
Tang, Qinglin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 343 :92-109
[8]   Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates [J].
Antoine, Xavier ;
Duboscq, Romain .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 :509-523
[9]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[10]   ASYMPTOTIC BEHAVIOR OF NONLINEAR SCHRODINGER SYSTEMS WITH LINEAR COUPLING [J].
Antonelli, Paolo ;
Weishaeupl, Rada Maria .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (01) :159-183