Machine learning prediction of concrete compressive strength with data enhancement

被引:10
|
作者
Cui, Xiaoning [1 ]
Wang, Qicai [1 ,2 ]
Zhang, Rongling [1 ]
Dai, Jinpeng [1 ,2 ]
Li, Sheng [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Civil Engn, Lanzhou, Peoples R China
[2] Lanzhou Jiaotong Univ, Natl & Prov Joint Engn Lab Rd & Bridge Disaster P, Lanzhou, Peoples R China
关键词
Machine learning; prediction of Compressive strength; feature reorganization; XGBoost; data enhancement; HIGH-PERFORMANCE CONCRETE; SUPPORT VECTOR REGRESSION; ALGORITHM; SILICA;
D O I
10.3233/JIFS-211088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The compressive strength of concrete can be predicted by machine learning. One thousand thirty samples of concrete compressive strength data were used as the dataset. Machine learning was applied to prediction of concrete compressive strength with seven machine learning algorithms. To improve data utilization and generalization ability of machine learning model, ten data sets were constructed by feature reorganization for data augmentation. Compared with other machine learning models, the XGBoost model based on Boosting tree algorithm had the highest prediction accuracy and the most robust generalization ability. With different multi-feature combination input conditions, the R-2 score of the XGBoost algorithm was 0.9283, the MAE score was 3.4292, the MAPE score was 12.5656, and the RMSE score was 5.2813. The error accumulation curve of the XGBoost algorithm was analyzed. When the compressive strength of concrete is at 5-20MPa, the error contribution rate is higher. When the concrete compressive strength is at 20-40MPa, the prediction result error of the model drops sharply. When the strength reaches 40MPa, the error contribution rate of the model tends to converge and the error contribution rate is stable between 1 and 1.2, which indicates that the model has high prediction accuracy when the compressive strength is higher than 40 MPa.
引用
收藏
页码:7219 / 7228
页数:10
相关论文
共 50 条
  • [21] Prediction of the compressive strength of normal concrete using ensemble machine learning approach
    Sapkota S.C.
    Saha P.
    Das S.
    Meesaraganda L.V.P.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 583 - 596
  • [22] Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques
    Jiang, Yimin
    Li, Hangyu
    Zhou, Yisong
    BUILDINGS, 2022, 12 (05)
  • [23] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Khursheed, Suhaila
    Jagan, J.
    Samui, Pijush
    Kumar, Sanjay
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2021, 6 (03)
  • [24] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Suhaila Khursheed
    J. Jagan
    Pijush Samui
    Sanjay Kumar
    Innovative Infrastructure Solutions, 2021, 6
  • [25] Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods
    Candelaria, Ma. Doreen Esplana
    Kee, Seong-Hoon
    Lee, Kang-Seok
    MATERIALS, 2022, 15 (05)
  • [26] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [27] Experimental study and machine learning based prediction of the compressive strength of geopolymer concrete
    Tran, Ngoc Thanh
    Nguyen, Duy Hung
    Tran, Quang Thanh
    Le, Huy Viet
    Nguyen, Duy-Liem
    MAGAZINE OF CONCRETE RESEARCH, 2024, 76 (13) : 723 - 737
  • [28] A novel composite machine learning model for the prediction of compressive strength of blended concrete
    E. V. Prasad
    S. Rama Krishna
    S. Singha
    Journal of Building Pathology and Rehabilitation, 2025, 10 (1)
  • [29] Machine learning prediction of concrete compressive strength using rebound hammer test
    El -Mir, Abdulkader
    El-Zahab, Samer
    Sbartai, Zoubir Mehdi
    Homsi, Farah
    Saliba, Jacqueline
    El-Hassan, Hilal
    JOURNAL OF BUILDING ENGINEERING, 2023, 64
  • [30] Machine Learning Modelling for Compressive Strength Prediction of Superplasticizer-Based Concrete
    Sadegh-Zadeh, Seyed-Ali
    Dastmard, Arman
    Kafshgarkolaei, Leili Montazeri
    Movahedi, Sajad
    Ghidary, Saeed Shiry
    Najafi, Amirreza
    Saadat, Mozafar
    INFRASTRUCTURES, 2023, 8 (02)