An adaptive state of charge estimator for lithium-ion batteries

被引:10
作者
Ali, Muhammad U. [1 ]
Khan, Hafiz F. [2 ]
Masood, Haris [3 ]
Kallu, Karam D. [4 ]
Ibrahim, Malik M. [5 ]
Zafar, Amad [6 ]
Oh, Semin [7 ]
Kim, Sangil [5 ]
机构
[1] Sejong Univ, Dept Unmanned Vehicle Engn, Seoul, South Korea
[2] Islamabad Elect Supply Co Ltd, Islamabad, Pakistan
[3] Univ Wah, Dept Elect Engn, Wah Cantt, Pakistan
[4] Natl Univ Sci & Technol NUST, Sch Mech & Mfg Engn SMME, H-12, Islamabad, Pakistan
[5] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
[6] Ibadat Int Univ, Dept Elect Engn, Islamabad 45750, Pakistan
[7] Pusan Natl Univ, Finance Fishery Mfg Ind Math Ctr Big Data, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
adaptive state of charge estimator; lithium-ion battery; online model identification; OF-CHARGE; MODEL; PARAMETER; DESIGN; HEALTH;
D O I
10.1002/ese3.1141
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a data-driven approach in conjunction with an adaptive extended Kalman filter (AEKF) to estimate lithium-ion batteries' state of charge (SOC) online. The Thevenin battery model is used to evaluate the effects using battery voltage and current. The advantages of the Lagrange multiplier method are utilized to model the lithium-ion battery. The Lagrange multiplier method continuously decreases the model error to adjust the Kalman gain of AEKF for accurate SOC estimation. Various current profiles such as hybrid pulse test, dynamic stress test, and Beijing dynamic stress test are used to verify the proposed approach's adaptability, robustness, and accuracy. It is observed that the proposed approach outperforms other methodologies (recursive least square-AEKF and forgetting factor recursive least square-AEKF) due to its high accuracy (mean average error of 0.32%). Additionally, the proposed approach exhibits robustness and high convergence speed despite deliberate erroneous initialization of parameters, thus indicating its applicability in online SOC estimation applications.
引用
收藏
页码:2333 / 2347
页数:15
相关论文
共 44 条
[1]   Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Park, Gwan-Soo ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (22)
[2]   Effect of Sensors Sensitivity on Lithium-Ion Battery Modeled Parameters and State of Charge: A Comparative Study [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Kim, Hee-Je .
ELECTRONICS, 2019, 8 (06)
[3]   Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Alvi, Muhammad Junaid ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (03)
[4]   An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method [J].
Ali, Muhammad Umair ;
Kamran, Muhammad Ahmad ;
Kumar, Pandiyan Sathish ;
Himanshu ;
Nengroo, Sarvar Hussain ;
Khan, Muhammad Adil ;
Hussain, Altaf ;
Kim, Hee-Je .
ENERGIES, 2018, 11 (11)
[5]   A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control [J].
Ali, Muhammad Umair ;
Nengroo, Sarvar Hussain ;
Khan, Muhamad Adil ;
Zeb, Kamran ;
Kamran, Muhammad Ahmad ;
Kim, Hee-Je .
ENERGIES, 2018, 11 (05)
[6]   Battery state-of-charge estimator using the SVM technique [J].
Alvarez Anton, J. C. ;
Garcia Nieto, P. J. ;
de Cos Juez, F. J. ;
Sanchez Lasheras, F. ;
Gonzalez Vega, M. ;
Roqueni Gutierrez, M. N. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (09) :6244-6253
[7]   Support Vector Machines Used to Estimate the Battery State of Charge [J].
Alvarez Anton, Juan Carlos ;
Garcia Nieto, Paulino Jose ;
Blanco Viejo, Cecilio ;
Vilan Vilan, Jose Antonio .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (12) :5919-5926
[8]  
[Anonymous], 2017, Battery data set
[9]  
Bole B., 2014, NASA AMES Progn. Data Repos, P70
[10]   A Lithium-Ion Battery-in-the-Loop Approach to Test and Validate Multiscale Dual H Infinity Filters for State-of-Charge and Capacity Estimation [J].
Chen, Cheng ;
Xiong, Rui ;
Shen, Weixiang .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (01) :332-342