Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol

被引:107
作者
Pang, Jifeng [1 ]
Zheng, Mingyuan [1 ]
Wang, Aiqin [1 ]
Zhang, Tao [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
美国国家科学基金会;
关键词
ENZYMATIC-HYDROLYSIS; CELLULOSE CONVERSION; RICE STRAW; BIOMASS; PRETREATMENT; LIGNIN; HEMICELLULOSE; BIOFUELS;
D O I
10.1021/ie102505y
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The use of whole lignocellulosic biomass as the feedstock for cellulose conversion is of great significance for large-scale, low-cost biomass conversion to biofuel and other useful chemicals. We recently achieved the direct conversion of cellulose (pure microcrystalline cellulose) into ethylene glycol at high yields over tungsten carbide catalysts. Here, corn stalk, an agricultural residue available in large quantities, was used as a lignocellulosic feedstock for conversion over nickel-promoted tungsten carbide catalysts under hydrothermal conditions and a hydrogen atmosphere. Nine different pretreatment methods were employed to convert the raw corn stalk to cellulosic feedstock with different chemical components and structures before the catalytic reaction. We found that corn stalks pretreated with 1,4-butanediol, NaOH, H2O2, and ammonia produced much higher yields of ethylene glycol (EG) and 1,2-propylene glycol (1,2-PG) compared to raw corn stalks, whereas pretreatments with ethanol solution, hot water, hot limewater, and supercritical CO2 just slightly improved the EG and 1,2-PG yields and corn stalk conversion. The hemicellulose in the corn stalk can be effectively converted to EG and 1,2-PG without hindering the cellulose conversion. In contrast, the lignin was resistant to degradation in the reaction and also inhibited EG and 1,2-PG production. The crystallinity of cellulose did not appear to have notable influence on the EG and 1,2-PG production. In view of the environmental benignity and low cost, pretreatment with ammonia and/or diluted H2O2 solution might be a practical method for corn stalk conversion, after which the derived cellulosic feedstock is readily converted into EG and 1,2-PG at an overall yield of 48% in the reaction.
引用
收藏
页码:6601 / 6608
页数:8
相关论文
共 47 条
[1]   Catalytic conversion of biomass to biofuels [J].
Alonso, David Martin ;
Bond, Jesse Q. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2010, 12 (09) :1493-1513
[2]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[3]   Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol [J].
Barta, Katalin ;
Matson, Theodore D. ;
Fettig, Makayla L. ;
Scott, Susannah L. ;
Iretskii, Alexei V. ;
Ford, Peter C. .
GREEN CHEMISTRY, 2010, 12 (09) :1640-1647
[4]   Compositional analysis of water-soluble materials in corn stover [J].
Chen, Shou-Feng ;
Mowery, Richard A. ;
Scarlata, Christopher J. ;
Chambliss, C. Kevin .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2007, 55 (15) :5912-5918
[5]   Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts [J].
Deng, Weiping ;
Liu, Mi ;
Tan, Xuesong ;
Zhang, Qinghong ;
Wang, Ye .
JOURNAL OF CATALYSIS, 2010, 271 (01) :22-32
[6]   Cellulose Conversion under Heterogeneous Catalysis [J].
Dhepe, Paresh L. ;
Fukuoka, Atsushi .
CHEMSUSCHEM, 2008, 1 (12) :969-975
[7]   Catalytic conversion of cellulose into sugar alcohols [J].
Fukuoka, Atsushi ;
Dhepe, Paresh L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (31) :5161-5163
[8]   Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion [J].
Gao, Miao ;
Xu, Feng ;
Li, Shurong ;
Ji, Xiaoci ;
Chen, Sanfeng ;
Zhang, Dequan .
BIOSYSTEMS ENGINEERING, 2010, 106 (04) :470-475
[9]   Hydrothermal processing of lignocellulosic materials [J].
Garrote, G ;
Domínguez, H ;
Parajó, JC .
HOLZ ALS ROH-UND WERKSTOFF, 1999, 57 (03) :191-202
[10]  
Goering H., 1970, USDA ARS AGR HDB, V379, P12