Approximation by bivariate Chlodowsky type Szasz-Durrmeyer operators and associated GBS operators on weighted spaces

被引:14
作者
Aslan, Resat [1 ]
Mursaleen, M. [2 ,3 ]
机构
[1] Harran Univ, Fac Sci & Arts, Dept Math, TR-63100 Sanliurfa, Turkey
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Weighted approximation; Mixed modulus of continuity; Lipschitz type functions; GBS type operators; Degree of approximation;
D O I
10.1186/s13660-022-02763-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a bivariate Chlodowsky type Szasz-Durrmeyer operators on weighted spaces. We obtain the rate of approximation in connection with the partial and complete modulus of continuity and also for the elements of the Lipschitz type class. Moreover, we examine the degree of convergence with regard to the weighted modulus of continuity and Peetre's K-functional. Further, we construct the associated GBS type of these operators and estimate the degree of approximation using the mixed modulus of continuity and a class of the Lipschitz of Bogel type continuous functions. Finally, with the help of Maple software, we present the comparisons of the convergence of the bivariate Chlodowsky type Szasz-Durrmeyer operators and associated GBS type operators to certain functions with some graphs and error estimation tables.
引用
收藏
页数:19
相关论文
共 39 条
[1]   The approximation of bivariate Chlodowsky-Szasz-Kantorovich-Charlier-type operators [J].
Agrawal, Purshottam Narain ;
Baxhaku, Behar ;
Chauhan, Ruchi .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[2]  
[Anonymous], 2006, POLYNOMIAL APPROXIMA
[3]   K-FUNCTIONALS AND MODULI OF SMOOTHNESS OF FUNCTIONS DEFINED ON COMPACT METRIC-SPACES [J].
BADEA, C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) :23-31
[4]  
Badea C., 1988, APPROXIMATION THEORY, V4, P95
[5]   On certain GBS-Durrmeyer operators based on q-integers [J].
Barbosu, Dan ;
Acu, Ana-Maria ;
Muraru, Carmen Violeta .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (02) :368-380
[6]  
Barbosu D, 2008, ANN UNIV CRAIOVA-MAT, V35, P1
[7]  
BASKAKOV VA, 1957, DOKL AKAD NAUK SSSR+, V113, P249
[8]  
Bernstein S., 1912, Commun. Kharkov Math. Soc., V13, P1
[9]  
Bögel K, 1935, J REINE ANGEW MATH, V173, P5
[10]  
Bogel K, 1934, J REINE ANGEW MATH, V170, P197