The plasticity of extracellular fluid homeostasis in insects

被引:22
作者
Beyenbach, Klaus W. [1 ]
机构
[1] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Environmental physiology; Hemolymph; Intracellular fluid; Volume expansion; Volume contraction; Isosmotic; Hyperosmotic challenge; Hypo-osmotic challenge; Solute/volume plots; Correction; Compensation; Gut; Malpighian tubules; Rectum; Anal papillae; MOSQUITO AEDES-AEGYPTI; X-RAY-MICROANALYSIS; DROSOPHILA MALPIGHIAN TUBULES; POST-ECLOSION DIURESIS; PHLOEM-FEEDING INSECT; PEA APHID; LARVAL MOSQUITO; ANAL PAPILLAE; OSMOTIC REGULATION; TRANSPORT MECHANISMS;
D O I
10.1242/jeb.129650
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass.
引用
收藏
页码:2596 / 2607
页数:12
相关论文
共 110 条
[1]  
Adam G., 2009, PHYS CHEM BIOPHYSIK, P619
[2]   Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration [J].
Albers, MA ;
Bradley, TJ .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2004, 207 (13) :2313-2321
[3]   THE ANAL PORTION AS A SALT-EXCRETING ORGAN IN A SEAWATER MOSQUITO LARVA, AEDES-TOGOI THEOBALD [J].
ASAKURA, K .
JOURNAL OF COMPARATIVE PHYSIOLOGY, 1980, 138 (01) :59-65
[4]   Living on a high sugar diet:: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum [J].
Ashford, DA ;
Smith, WA ;
Douglas, AE .
JOURNAL OF INSECT PHYSIOLOGY, 2000, 46 (03) :335-341
[5]  
Beadle LC, 1939, J EXP BIOL, V16, P346
[6]   WATER RELATIONS OF INSECT CUTICLE [J].
BEAMENT, JW .
BIOLOGICAL REVIEWS, 1961, 36 (03) :281-+
[7]   Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica [J].
Benoit, Joshua B. ;
Lopez-Martinez, Giancarlo ;
Michaud, M. Robert ;
Elnitsky, Michael A. ;
Lee, Richard E., Jr. ;
Denlinger, David L. .
JOURNAL OF INSECT PHYSIOLOGY, 2007, 53 (07) :656-667
[8]   Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti [J].
Beyenbach, K. W. ;
Piermarini, P. M. .
ACTA PHYSIOLOGICA, 2011, 202 (03) :387-407
[9]  
Beyenbach K. W., 2004, BIOL DIS VECTORS, P347
[10]   The Developmental, Molecular, and Transport Biology of Malpighian Tubules [J].
Beyenbach, Klaus W. ;
Skaer, Helen ;
Dow, Julian A. T. .
ANNUAL REVIEW OF ENTOMOLOGY, 2010, 55 :351-374