Anomalous thermal conductance of graphyne under lower temperature

被引:10
作者
Chen, Xue-Kun [1 ]
Liu, Jun [2 ]
Du, Dan [1 ]
Chen, Ke-Qiu [3 ,4 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[3] Hunan Univ, Dept Appl Phys, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[4] Synerget Innovat Ctr Quantum Effects & Applicat H, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
graphyne; thermal conductance; molecular dynamics; coherent phonons; CONDUCTIVITY; TRANSPORT; GRAPHENE; CARBON; GRAPHDIYNE; NANOWIRES;
D O I
10.1088/1361-648X/aa8c3e
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The thermal transport properties of graphyne are investigated via equilibrium molecular dynamics (EMD) simulations and non-equilibrium Green's function (NEGF) method. It is found that the room-temperature thermal conductivity of graphyne is 93% lower than that of graphene with a similar size and decreases steeply with increasing the number of acetylenic linkages, which agrees with the results obtained by NEGF method qualitatively. Lattice dynamics calculations reveal that these phenomena can be attributed to the reduction of both phonon group velocities and phonon lifetimes in graphyne at low-frequency region. However, when the temperature is less than 30 K, the thermal conductance of graphyne exceeds that of graphene. Moreover, the anomalous thermal conductance behavior is not sensitive to the system lateral size. The underlying mechanisms for such phenomena are elaborated by the normal mode analysis.
引用
收藏
页数:8
相关论文
共 63 条
[1]   Effect of hydrogenation on graphene thermal transport [J].
Barbarino, Giuliana ;
Melis, Claudio ;
Colombo, Luciano .
CARBON, 2014, 80 :167-173
[2]   STRUCTURE-PROPERTY PREDICTIONS FOR NEW PLANAR FORMS OF CARBON - LAYERED PHASES CONTAINING SP2 AND SP ATOMS [J].
BAUGHMAN, RH ;
ECKHARDT, H ;
KERTESZ, M .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (11) :6687-6699
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[5]   Phonon wave interference in graphene and boron nitride superlattice [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Tang, Li-Ming ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2016, 109 (02)
[6]   The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (11)
[7]   Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Tang, Li-Ming ;
Chen, Ke-Qiu .
CARBON, 2016, 100 :492-500
[8]   All-Carbon Scaffolds by Rational Design [J].
Diederich, Francois ;
Kivala, Milan .
ADVANCED MATERIALS, 2010, 22 (07) :803-812
[9]   The General Utility Lattice Program (GULP) [J].
Gale, JD ;
Rohl, AL .
MOLECULAR SIMULATION, 2003, 29 (05) :291-341
[10]   Multi-wall effects on the thermal transport properties of nanotube structures [J].
Hata, Tomoyuki ;
Kawai, Hiroki ;
Jono, Ryota ;
Yamashita, Koichi .
NANOTECHNOLOGY, 2014, 25 (24)