Weakly Periodic Gibbs Measures for HC-Models on Cayley Trees

被引:6
作者
Khakimov, R. M. [1 ]
机构
[1] Namangan State Univ, Namangan, Uzbekistan
关键词
Cayley tree; configuration; HC-model; fertile graph; Gibbs measure; weakly periodic measure; translation-invariant measure; HARD-CORE MODELS; UNIQUENESS; STATES;
D O I
10.1134/S0037446618010160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hard-core (HC) models on Cayley trees. Given a 2-state HC-model, we prove that exactly two weakly periodic (aperiodic) Gibbs measures exist under certain conditions on the parameters. Moreover, we consider fertile 4-state HC-models with the activity parameter lambda > 0. The three types of these models are known to exist. For one of the models we show that the translationinvariant Gibbs measure is not unique.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 19 条
[1]   Graph homomorphisms and phase transitions [J].
Brightwell, GR ;
Winkler, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (02) :221-262
[2]   Description of periodic extreme Gibbs measures of some lattice models on the Cayley tree [J].
Ganikhodzhaev, NN ;
Rozikov, UA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (01) :480-486
[3]  
Georgii H-O., 1988, Gibbs measures and phase transitions
[4]   Weakly Periodic Gibbs Measures in the HC-Model for a Normal Divisor of Index Four [J].
Khakimov, R. M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (10) :1584-1598
[5]   GIBBS MEASURES FOR FERTILE HARD-CORE MODELS ON THE CAYLEY TREE [J].
Khakimov, R. M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (02) :294-305
[6]   TRANSLATION-INVARIANT GIBBS MEASURES FOR FERTILE THREE-STATE "HARD CORE" MODELS ON A CAYLEY TREE [J].
Khakimov, R. M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 183 (03) :829-835
[7]   Uniqueness of weakly periodic Gibbs measure for HC-models [J].
Khakimov, R. M. .
MATHEMATICAL NOTES, 2013, 94 (5-6) :834-838
[8]  
Khakimov RM, 2015, J SIB FED UNIV-MATH, V8, P165
[9]   A three state hard-core model on a Cayley tree [J].
Martin, J ;
Rozikov, U ;
Suhov, Y .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (03) :432-448
[10]   RANDOM SURFACES WITH 2-SIDED CONSTRAINTS - AN APPLICATION OF THE THEORY OF DOMINANT GROUND-STATES [J].
MAZEL, AE ;
SUHOV, YM .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (1-2) :111-134