Multiscale Hemodynamics Using GPU Clusters

被引:11
作者
Bisson, Mauro [1 ]
Bernaschi, Massimo [2 ]
Melchionna, Simone [3 ,4 ]
Succi, Sauro [2 ,5 ]
Kaxiras, Efthimios [4 ,6 ,7 ]
机构
[1] Univ Roma La Sapienza, Dept Comp Sci, Rome, Italy
[2] CNR, Ist Applicaz Calcolo, Rome, Italy
[3] CNR, Ist Proc Chimicofis, Rome, Italy
[4] Ecole Polytech Fed Lausanne, Inst Mat Sci & Engn, CH-1015 Lausanne, Switzerland
[5] Freiburg Inst Adv Studies, Sch Soft Matter Res, D-79104 Freiburg, Germany
[6] Harvard Univ, Dept Phys, Cambridge, MA USA
[7] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA USA
关键词
Multi-GPU computing; hemodynamics; molecular dynamics; irregular domain; MOLECULAR-DYNAMICS;
D O I
10.4208/cicp.210910.250311a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parallel implementation of MUPHY, a concurrent multiscale code for large-scale hemodynamic simulations in anatomically realistic geometries, for multi-GPU platforms is presented. Performance tests show excellent results, with a nearly linear parallel speed-up on up to 32GPUs and a more than tenfold GPU/CPU acceleration, all across the range of GPUs. The basic MUPHY scheme combines a hydrokinetic (Lattice Boltzmann) representation of the blood plasma, with a Particle Dynamics treatment of suspended biological bodies, such as red blood cells. To the best of our knowledge, this represents the first effort in the direction of laying down general design principles for multiscale/physics parallel Particle Dynamics applications in non-ideal geometries. This configures the present multi-GPU version of MUPHY as one of the first examples of a high-performance parallel code for multiscale/physics biofluidic applications in realistically complex geometries.
引用
收藏
页码:48 / 64
页数:17
相关论文
共 12 条
[1]  
[Anonymous], 1994, MPI MESS PASS INT ST
[2]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[3]   MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations [J].
Bernaschi, M. ;
Melchionna, S. ;
Succi, S. ;
Fyta, M. ;
Kaxiras, E. ;
Sircar, J. K. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1495-1502
[4]  
Bernaschi M., 2009, CONCURRENCY PRAC EX, DOI [10.1002/cpe.1466, DOI 10.1002/CPE.1466]
[5]   Parallel Molecular Dynamics with Irregular Domain Decomposition [J].
Bisson, Mauro ;
Bernaschi, Massimo ;
Melchionna, Simone .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (04) :1071-1088
[6]   Symplectic splitting methods for rigid body molecular dynamics [J].
Dullweber, A ;
Leimkuhler, B ;
McLachlan, R .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (15) :5840-5851
[7]  
Fyta M., 2008, COMPUT SCI ENG MAR
[8]   Multiscale coupling of molecular dynamics and hydrodynamics: Application to DNA translocation through a nanopore [J].
Fyta, Maria G. ;
Melchionna, Simone ;
Kaxiras, Efthimios ;
Succi, Sauro .
MULTISCALE MODELING & SIMULATION, 2006, 5 (04) :1156-1173
[9]   MODIFICATION OF THE OVERLAP POTENTIAL TO MIMIC A LINEAR SITE-SITE POTENTIAL [J].
GAY, JG ;
BERNE, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (06) :3316-3319
[10]   Hydrokinetic approach to large-scale cardiovascular blood flow [J].
Melchionna, Simone ;
Bernaschi, Massimo ;
Succi, Sauro ;
Kaxiras, Efthimios ;
Rybicki, Frank J. ;
Mitsouras, Dimitris ;
Coskun, Ahmet U. ;
Feldman, Charles L. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) :462-472