DOTA: Deep Learning Optimal Transport Approach to Advance Drug Repositioning for Alzheimer's Disease

被引:10
作者
Chyr, Jacqueline [1 ]
Gong, Haoran [2 ]
Zhou, Xiaobo [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Ctr Computat Syst Med, Houston, TX 77030 USA
[2] Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, Chengdu 610041, Peoples R China
关键词
Alzheimer's disease; drug repositioning; deep learning; multi-modal autoencoder; optimal transport problem; reactome; diseasome; circadian patterns; CIRCADIAN CLOCK; ANTICHOLINERGIC EXPOSURE; SEMANTIC SIMILARITY; OLDER-ADULTS; A-BETA; SLEEP; SCALE; RISK; MECHANISMS; DEMENTIA;
D O I
10.3390/biom12020196
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States and incurring a substantial global healthcare cost. Unfortunately, current treatments are only palliative and do not cure AD. There is an urgent need to develop novel anti-AD therapies; however, drug discovery is a time-consuming, expensive, and high-risk process. Drug repositioning, on the other hand, is an attractive approach to identify drugs for AD treatment. Thus, we developed a novel deep learning method called DOTA (Drug repositioning approach using Optimal Transport for Alzheimer's disease) to repurpose effective FDA-approved drugs for AD. Specifically, DOTA consists of two major autoencoders: (1) a multi-modal autoencoder to integrate heterogeneous drug information and (2) a Wasserstein variational autoencoder to identify effective AD drugs. Using our approach, we predict that antipsychotic drugs with circadian effects, such as quetiapine, aripiprazole, risperidone, suvorexant, brexpiprazole, olanzapine, and trazadone, will have efficacious effects in AD patients. These drugs target important brain receptors involved in memory, learning, and cognition, including serotonin 5-HT2A, dopamine D2, and orexin receptors. In summary, DOTA repositions promising drugs that target important biological pathways and are predicted to improve patient cognition, circadian rhythms, and AD pathogenesis.
引用
收藏
页数:16
相关论文
共 109 条
[1]   Quantifying Anticholinergic Burden and Sedative Load in Older Adults with Polypharmacy: A Systematic Review of Risk Scales and Models [J].
Al Rihani, Sweilem B. ;
Deodhar, Malavika ;
Darakjian, Lucy, I ;
Dow, Pamela ;
Smith, Matt K. ;
Bikmetov, Ravil ;
Turgeon, Jacques ;
Michaud, Veronique .
DRUGS & AGING, 2021, 38 (11) :977-994
[2]   Activity changes and marked stereotypic behavior precede Aβ pathology in TgCRND8 Alzheimer mice [J].
Ambree, Oliver ;
Touma, Chadi ;
Goertz, Nicole ;
Keyvani, Kathy ;
Paulus, Werner ;
Palme, Rupert ;
Sachser, Norbert .
NEUROBIOLOGY OF AGING, 2006, 27 (07) :955-964
[3]   Literature mining, ontologies and information visualization for drug repurposing [J].
Andronis, Christos ;
Sharma, Anuj ;
Virvilis, Vassilis ;
Deftereos, Spyros ;
Persidis, Aris .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (04) :357-368
[4]  
[Anonymous], 2009, P INT AAAI C WEB SOC
[5]   Treatment of Alzheimer's Disease: Trazodone, Sleep, Serotonin, Norepinephrine, and Future Directions [J].
Ashford, John Wesson .
JOURNAL OF ALZHEIMERS DISEASE, 2019, 67 (03) :923-930
[6]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[7]   Sundowning syndrome in aging and dementia: Research in mouse models [J].
Bedrosian, Tracy A. ;
Nelson, Randy J. .
EXPERIMENTAL NEUROLOGY, 2013, 243 :67-73
[8]   SLEEP COMPLAINTS IN OLDER ADULTS - A RACIAL COMPARISON [J].
BLAZER, DG ;
HAYS, JC ;
FOLEY, DJ .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 1995, 50 (05) :M280-M284
[9]   The Unified Medical Language System (UMLS): integrating biomedical terminology [J].
Bodenreider, O .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D267-D270
[10]  
Boustani M., 2008, Aging Health, V4, P311, DOI [10.2217/1745509X.4.3.311, DOI 10.2217/1745509X.4.3.311, 10.2217/1745509x.4.3.311]