Proof of a conjecture on connectivity of Kronecker product of graphs

被引:16
作者
Wang, Yun [1 ]
Wu, Baoyindureng [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Kronecker product; Cartesian product; Connectivity;
D O I
10.1016/j.disc.2011.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, kappa (G) denotes its connectivity. The Kronecker product G(1) x G(2) of graphs G(1) and G(2) is the graph with the vertex set V(G(1)) x V(G(2)), two vertices (u(1), v(1)) and (u(2), v(2)) being adjacent in G(1) x G(2) if and only if u(1)u(2) is an element of E(G(1)) and v(1)v(2) is an element of E(G(2)). Guji and Vumar [R. Guji, E. Vumar, A note on the connectivity of Kronecker products of graphs, Appl. Math. Lett. 22 (2009) 1360-1363] conjectured that for any nontrivial graph G, kappa(G x K(n)) = min{n kappa (G), (n - 1)delta(G)} when n >= 3. In this note, we confirm this conjecture to be true. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2563 / 2565
页数:3
相关论文
共 7 条
[1]  
[Anonymous], 2001, Introduction to Graph Theory
[2]  
Bresar B, 2008, AUSTRALAS J COMB, V41, P45
[3]   A note on the connectivity of Kronecker products of graphs [J].
Guji, Raxida ;
Vumar, Elkin .
APPLIED MATHEMATICS LETTERS, 2009, 22 (09) :1360-1363
[4]   Vertex vulnerability parameters of Kronecker products of complete graphs [J].
Mamut, Aygul ;
Vumar, Elkin .
INFORMATION PROCESSING LETTERS, 2008, 106 (06) :258-262
[5]   Connectivity of Cartesian products of graphs [J].
Spacapan, Simon .
APPLIED MATHEMATICS LETTERS, 2008, 21 (07) :682-685
[6]  
Weichsel Paul M., 1962, Proceedings of the American mathematical society, V13, P47
[7]   Connectivity of Cartesian product graphs [J].
Xu, JM ;
Yang, C .
DISCRETE MATHEMATICS, 2006, 306 (01) :159-165