Edge-Conditioned Feature Transform Network for Hyperspectral and Multispectral Image Fusion

被引:3
|
作者
Zheng, Yuxuan [1 ]
Li, Jiaojiao [1 ,2 ]
Li, Yunsong [1 ]
Guo, Jie [1 ]
Wu, Xianyun [1 ]
Shi, Yanzi [1 ]
Chanussot, Jocelyn [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Sch Telecommun Engn, Xian 710071, Peoples R China
[2] CAS Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
[3] Univ Grenoble Alpes, Inria, LJK, Grenoble INP,CNRS, F-38000 Grenoble, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Image edge detection; Feature extraction; Spatial resolution; Pansharpening; Image reconstruction; Convolutional neural networks; Transforms; Edge prior; feature transform network; hyperspectral image (HSI); image fusion; multispectral image (MSI); transfer learning (TL); REMOTE-SENSING IMAGES; MULTISCALE FUSION; RESOLUTION; QUALITY; DEEP; MS;
D O I
10.1109/TGRS.2021.3108122
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Despite recent advances achieved by deep learning techniques in the fusion of low-spatial-resolution hyperspectral image (LR-HSI) and high-spatial-resolution multispectral image (HR-MSI), it remains a challenge to reconstruct the high-spatial-resolution HSI (HR-HSI) with more accurate spatial details and less spectral distortions, since the low-level structure information such as sharp edges tends to be weakened or lost as the network depth grows. To tackle this issue, we creatively propose an edge-conditioned feature transform network (EC-FTN) in this article, which is mainly composed of three parts, namely, feature extraction network (FEN), feature fusion and transformation network (FFTN), and image reconstruction network (IRN). First, two computationally efficient FENs with 3-D convolutions and reshaping layers are employed to extract the joint spectral-spatial features of input images. Then, the FFTN conditioned on the edge map prior can fuse and transform the features adaptively, in which a fusion node and several cascaded feature modulation modules (FMMs) equipped with feature-wise modulation layers are constructed. Specifically, the edge map is generated via transfer learning, i.e., by applying the Sobel operator to feature maps of the red-green-blue (RGB) version of HR-MSI resulting from the pretrained VGG16 model without extra training. Finally, the desired HR-HSI is recovered from the transformed features through IRN. Furthermore, we elaborately design a weighted combinatorial loss function consisting of mean absolute error, image gradient difference, and spectral angle terms to guide the training. Experiments on both ground-based and remotely sensed datasets demonstrate that our EC-FTN outperforms state-of-the-art methods in visual and quantitive evaluations, as well as in fine details reconstruction.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Edge-Conditioned Feature Transform Network for Hyperspectral and Multispectral Image Fusion
    Zheng, Yuxuan
    Li, Jiaojiao
    Li, Yunsong
    Guo, Jie
    Wu, Xianyun
    Shi, Yanzi
    Chanussot, Jocelyn
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [2] A Novel Multi-scale Feature Fusion Based Network for Hyperspectral and Multispectral Image Fusion
    Dong, Shuai
    Huang, Shaoguang
    Zhang, Jinhan
    Zhang, Hongyan
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 530 - 544
  • [3] A Deep Unfolding Network for Multispectral and Hyperspectral Image Fusion
    Zhang, Bihui
    Cao, Xiangyong
    Meng, Deyu
    REMOTE SENSING, 2024, 16 (21)
  • [4] Hyperspectral and Multispectral Image Fusion Based on Residual Dense Fusion Network
    Luo, Yuyuan
    Deng, Jiawei
    Yang, Bin
    SENSING AND IMAGING, 2025, 26 (01):
  • [5] An Asymptotic Multiscale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion
    Liu, Shuaiqi
    Shao, Tingting
    Liu, Siyuan
    Li, Bing
    Zhang, Yu-Dong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [6] Pyramid Fully Convolutional Network for Hyperspectral and Multispectral Image Fusion
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1549 - 1558
  • [7] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION BASED ON DEEP ATTENTION NETWORK
    Yang, Qing
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [8] HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion
    Li, Kun
    Zhang, Wei
    Yu, Dian
    Tian, Xin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 30 - 44
  • [9] Hyperspectral Image Classification With Deep Feature Fusion Network
    Song, Weiwei
    Li, Shutao
    Fang, Leyuan
    Lu, Ting
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3173 - 3184
  • [10] Compressive hyperspectral and multispectral image fusion
    Espitia, Oscar
    Castillo, Sergio
    Arguello, Henry
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840