Global dynamics and traveling wave solutions for a three-species model

被引:0
作者
Li, Fanfan [1 ,2 ]
Han, Zhenlai [1 ]
Yang, Ting-Hui [3 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
[3] Tamkang Univ, Dept Math, New Taipei 25137, Taiwan
关键词
global asymptotically stability; traveling wave solutions; two predators-one prey system; Wazewski principle; PREDATOR-PREY EQUATIONS; STABILITY; EXISTENCE; OMNIVORY;
D O I
10.1002/mma.7934
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the system of a three-species ecological model involving one predator-prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the existence of traveling wave solutions, are investigated by a higher dimensional shooting method, the Wazewski method. These mathematical results, under mild conditions, imply that a generalist predator can stabilize a predator-prey system even with negative effects of coupling. Finally, some biological implications are given and the interesting numerical simulations are performed.
引用
收藏
页码:2380 / 2397
页数:18
相关论文
共 27 条
[1]  
Chen X., 1997, ADV DIFFERENTIAL EQU, V2, P125, DOI [10.57262/ade/1366809230, 10.1186/1687-1847-2013-125]
[2]   TRAVELING WAVES IN DIFFUSIVE PREDATOR-PREY EQUATIONS - PERIODIC-ORBITS AND POINT-TO-PERIODIC HETEROCLINIC ORBITS [J].
DUNBAR, SR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (06) :1057-1078
[4]  
DUNBAR SR, 1983, J MATH BIOL, V17, P11
[5]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[6]   Mathematical modelling of plant species interactions in a harsh climate [J].
Ford, Neville J. ;
Lumb, Patricia M. ;
Ekaka-a, Enu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2732-2744
[7]   THE EXISTENCE OF PERIODIC TRAVELING WAVES FOR SINGULARLY PERTURBED PREDATOR PREY EQUATIONS VIA THE CONLEY INDEX [J].
GARDNER, R ;
SMOLLER, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 47 (01) :133-161
[8]   FiPy: Partial Differential Equations with Python']Python [J].
Guyer, Jonathan E. ;
Wheeler, Daniel ;
Warren, James A. .
COMPUTING IN SCIENCE & ENGINEERING, 2009, 11 (03) :6-15
[9]   Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression [J].
Honaas, Loren A. ;
Wafula, Eric K. ;
Yang, Zhenzhen ;
Der, Joshua P. ;
Wickett, Norman J. ;
Altman, Naomi S. ;
Taylor, Christopher G. ;
Yoder, John I. ;
Timko, Michael P. ;
Westwood, James H. ;
dePamphilis, Claude W. .
BMC PLANT BIOLOGY, 2013, 13
[10]   Existence of traveling wave solutions for diffusive predator-prey type systems [J].
Hsu, Cheng-Hsiung ;
Yang, Chi-Ru ;
Yang, Ting-Hui ;
Yang, Tzi-Sheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) :3040-3075