Exact solution of the extended dimer Bose-Hubbard model with multi-body interactions

被引:2
|
作者
Pan, Feng [1 ,2 ]
Li, Dongkang [1 ,3 ]
Cui, Sai [1 ]
Zhang, Yu [1 ]
Feng, Ziwei [1 ]
Draayer, Jerry P. [2 ]
机构
[1] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Tonghua Normal Univ, Dept Phys, Jilin 134002, Jilin, Peoples R China
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2020年 / 2020卷 / 04期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
algebraic structures of integrable models; Bose Einstein condensation; Hubbard and related model; quantum integrability (Bethe Ansatz); QUANTUM PHASE-TRANSITION; FORM-FACTORS; DYNAMICS; SUPERFLUID; GAS; INSULATOR;
D O I
10.1088/1742-5468/ab7a21
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown that the extended one-dimensional dimer Bose-Hubbard model with multi-body interactions can be solved exactly by using the algebraic Bethe ansatz mainly due to the site-permutation S-2 symmetry. The solution for the model with up to three-particle hopping and three-body on-site interaction is explicitly shown. As an example of the application, lower part of the excitation energy levels and the ground-state entanglement measure of the standard Bose-Hubbard Hamiltonian with the attractive two-body on-site interaction plus the three-body on-site interaction for 100 bosons with variation of the control parameter are calculated by using the exact solution. It is shown that the attractive three-body on-site interaction reinforces the critical point entanglement of the system, which may be helpful for design of an optical lattice for ultracold atoms or a tuneable superconducting quantum interference device with maximal entanglement.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Extended Bose-Hubbard models with ultracold magnetic atoms
    Baier, S.
    Mark, M. J.
    Petter, D.
    Aikawa, K.
    Chomaz, L.
    Cai, Z.
    Baranov, M.
    Zoller, P.
    Ferlaino, F.
    SCIENCE, 2016, 352 (6282) : 201 - 205
  • [32] The dissipative Bose-Hubbard model
    Kordas, G.
    Witthaut, D.
    Buonsante, P.
    Vezzani, A.
    Burioni, R.
    Karanikas, A. I.
    Wimberger, S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (11) : 2127 - 2171
  • [33] Double-well Bose-Hubbard model with nearest-neighbor and cavity-mediated long-range interactions
    Sicks, Johannes
    Rieger, Heiko
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [34] Competing insulating phases in a dimerized extended Bose-Hubbard model
    Hayashi, Aoi
    Mondal, Suman
    Mishra, Tapan
    Das, B. P.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [35] Quantum bright solitons in the Bose-Hubbard model with site-dependent repulsive interactions
    Barbiero, L.
    Malomed, B. A.
    Salasnich, L.
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [36] One-dimensional Bose-Hubbard model with local three-body interactions
    Ejima, Satoshi
    Lange, Florian
    Fehske, Holger
    Gebhard, Florian
    Muenster, Kevin Zu
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [37] Ground-state phase diagram of the two-dimensional extended Bose-Hubbard model
    Ohgoe, Takahiro
    Suzuki, Takafumi
    Kawashima, Naoki
    PHYSICAL REVIEW B, 2012, 86 (05)
  • [38] Quantum phases of the Bose-Hubbard model in optical superlattices
    Chen, Bo-Lun
    Kou, Su-Peng
    Zhang, Yunbo
    Chen, Shu
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [39] Extended Bose-Hubbard model with pair hopping on triangular lattice
    Wang Yan-Cheng
    Zhang Wan-Zhou
    Shao Hui
    Guo Wen-An
    CHINESE PHYSICS B, 2013, 22 (09)
  • [40] Thermal fluctuations of the extended Bose-Hubbard model at finite temperature
    Zhang, Yuanyu
    Qin, Jihong
    Xu, Junjun
    ANNALS OF PHYSICS, 2023, 455