Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska

被引:133
|
作者
Hinkel, KM [1 ]
Doolittle, JA
Bockheim, JG
Nelson, FE
Paetzold, R
Kimble, JM
Travis, R
机构
[1] Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA
[2] USDA, NRCS, Newtown Sq, PA 19073 USA
[3] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA
[4] Univ Delaware, Dept Geog, Newark, DE 19716 USA
[5] USDA, NRCS, NSSC, Lincoln, NE 68508 USA
[6] NASA, Stennis Space Ctr, MS 39529 USA
关键词
active layer; Alaska; frozen ground; geophysical techniques; ground-penetrating radar; permafrost;
D O I
10.1002/ppp.369
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
A ground-penetrating radar (GPR) survey was conducted in May 1999 on the 1 km(2) Circumpolar Active Layer Monitoring (CALM) grid 5km east of Barrow, Alaska. Spatially continuous measurements were collected along established transects while the active layer remained frozen. The primary objectives were to determine the 'long-term' position of the permafrost table, to recognize ice wedges and ice lenses, and to locate the organic-mineral soil interface. GPR signal and core collection were performed in tandem to verify signal interpretation, to calibrate the instrument, and to determine optimal GPR data-collection parameters. Two-way travel times from the antenna to subsurface reflectors were compared with measured depths obtained from soil cores to estimate an average pulse propagation velocity of 0.13 m/ns through the frozen soil. The most conspicuous subsurface reflectors were ice wedges, which gave high-amplitude hyperbolic reflections. Owing to its higher ice content, the approximate long-term position of the permafrost table could be traced laterally across the profile. Radar interpretations were obscured by the effects of cryoturbation, and because some horizons lack sufficient contrast in electrical properties. Highly detailed information can be obtained by collecting radar data at relatively slow speeds of advance, by using faster scanning rates (> 32 scans/s), and by employing high-frequency antennas (> 400 MHz). Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:179 / 190
页数:14
相关论文
共 50 条
  • [1] Reliability Analysis of Ground-Penetrating Radar for the Detection of Subsurface Delamination
    Sultan, Ali A.
    Washer, Glenn A.
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (02)
  • [2] Ground-Penetrating Radar for Studies of Peatlands in Permafrost
    Sudakova, M. S.
    Sadurtdinov, M. R.
    Tsarev, A. M.
    Skvortsov, A. G.
    Malkova, G., V
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2019, 60 (07) : 793 - 800
  • [3] Anomaly Detection of Subsurface Objects Using Handheld Ground-Penetrating Radar
    Ho, K. C.
    Harris, Samuel
    Zare, Alina
    Cook, Matthew
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XX, 2015, 9454
  • [4] Ground-penetrating radar profile spacing and orientation for subsurface resolution of linear features
    Pomfret, James
    ARCHAEOLOGICAL PROSPECTION, 2006, 13 (02) : 151 - 153
  • [5] Using ground-penetrating radar to delineate subsurface features along a wetland catena
    Lapen, DR
    Moorman, BJ
    Price, JS
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1996, 60 (03) : 923 - 931
  • [6] IDENTIFICATION OF SUBSURFACE DRAIN LOCATIONS WITH GROUND-PENETRATING RADAR
    CHOW, TL
    REES, HW
    CANADIAN JOURNAL OF SOIL SCIENCE, 1989, 69 (02) : 223 - 234
  • [7] GROUND-PENETRATING RADAR AS A SUBSURFACE ENVIRONMENTAL SENSING TOOL
    PETERS, L
    DANIELS, JJ
    YOUNG, JD
    PROCEEDINGS OF THE IEEE, 1994, 82 (12) : 1802 - 1822
  • [8] Ground-penetrating radar monitoring of fast subsurface processes
    Allroggen, Niklas
    Beiter, Daniel
    Tronicke, Jens
    GEOPHYSICS, 2020, 85 (03) : A19 - A23
  • [9] Subsurface surveying by a rover equipped with ground-penetrating radar
    Barfoot, TD
    D'Eleuterio, GMT
    Annan, AP
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 2541 - 2546
  • [10] Phantom subsurface targets in ground-penetrating radar data
    Diamanti, Nectaria
    Annan, A. Peter
    Vargemezis, Georgios
    GEOPHYSICS, 2022, 87 (04) : WB31 - WB40