Derived categories of torsors for abelian schemes

被引:14
作者
Antieau, Benjamin
Krashen, Daniel
Ward, Matthew
机构
关键词
Derived equivalence; Genus; 1; curves; Elliptic; 3-folds; Brauer groups; FOURIER-MUKAI TRANSFORMS; RELATIVE BRAUER GROUPS; GENUS ONE; CURVES; SURFACES; GEOMETRY; FIELDS;
D O I
10.1016/j.aim.2016.09.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of our paper, we show that there exist non isomorphic derived equivalent genus 1 curves, and correspondingly there exist non-isomorphic moduli spaces of stable vector bundles on genus 1 curves in general. Neither occurs over an algebraically closed field. We give necessary and sufficient conditions for two genus 1 curves to be derived equivalent, and we go on to study when two principal homogeneous spaces for an abelian variety have equivalent derived categories. We apply our results to study twisted derived equivalences of the form D-b(J, alpha) similar or equal to D-b(J,beta), when J is an elliptic fibration, giving a partial answer to a question of Caldararu. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 27 条
[1]  
[Anonymous], THESIS
[2]  
Antieau B., 2012, ETALE TWISTS NONCOMM
[3]  
Atiyah MF., 1957, Proc. London Math. Soc., V7, P414, DOI 10.1112/plms/s3-7.1.414
[4]  
Ben-Assat O, 2009, T AM MATH SOC, V361, P5469
[5]   INTEGRAL TRANSFORMS AND DRINFELD CENTERS IN DERIVED ALGEBRAIC GEOMETRY [J].
Ben-Zvi, David ;
Francis, John ;
Nadler, David .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (04) :909-966
[6]  
Bondal A, 2003, MOSC MATH J, V3, P1
[7]   Reconstruction of a variety from the derived category and groups of autoequivalences [J].
Bondal, A ;
Orlov, D .
COMPOSITIO MATHEMATICA, 2001, 125 (03) :327-344
[8]   Fourier-Mukai transforms for K3 and elliptic fibrations [J].
Bridgeland, T ;
Maciocia, A .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :629-657
[9]   Complex surfaces with equivalent derived categories [J].
Bridgeland, T ;
Maciocia, A .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (04) :677-697
[10]  
Bridgeland T, 1998, J REINE ANGEW MATH, V498, P115