FINITENESS OF φ-ORDER OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS IN THE UNIT DISC

被引:26
作者
Chyzhykov, I. [2 ]
Heittokangas, J. [1 ]
Rattya, J. [1 ]
机构
[1] Univ Joensuu, Dept Math, FIN-80101 Joensuu, Finland
[2] Lviv Natl Univ, Dept Mech & Math, UA-79000 Lvov, Ukraine
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2009年 / 109卷
基金
芬兰科学院;
关键词
COEFFICIENTS; GROWTH;
D O I
10.1007/s11854-009-0030-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If phi : [0, 1) -> (0, infinity) is a non- decreasing unbounded function, then the phi-order of a meromorphic function f in the unit disc is defined as sigma phi(f) = lims up log+T(r, f)/log phi(r)r -> 1(-) where T (r, f) is the Nevanlinna characteristic of f. In particular, sigma 1/1-r (f) order of f, and sigma log 1/1-r (f) is the logarithmic order of f. Several results on the finiteness of the phi-order of solutions of f((k)) + A(k-1)(z) f((k-1)) + ... + A(1)(z) f' + A(0)(z) f = 0 are obtained in the case when the coefficients A(0)(z), ... , A(k-1)(z) are analytic functions in the unit disc. This paper completes some earlier results by various authors.
引用
收藏
页码:163 / 198
页数:36
相关论文
共 31 条
[21]  
Korhonen R, 2005, COMPUT METH FUNCT TH, V5, P459
[22]   Finite order solutions of linear differential equations in the unit disc [J].
Korhonen, Risto ;
Rattya, Jouni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (01) :43-54
[23]   Linear differential equations in the unit disc with analytic solutions of finite order [J].
Korhonen, Risto ;
Rattya, Jouni .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (05) :1355-1363
[24]  
Laine I., 1993, Nevanlinna theory and complex differential equations
[25]  
Levin B. Ja., 1980, TRANSL MATH MONOGRAP, V5
[26]  
Linden C. N., 1956, Q. J. Math. Oxf. Ser., V7, P196, DOI [10.1093/qmath/7.1.196, DOI 10.1093/QMATH/7.1.196]
[27]  
PETROSYAN VG, 1990, THESIS EREVAN
[28]  
Pommerenke Chr., 1982, COMPLEX VARIABLES, V1, P23
[29]  
RATTYA J, 2007, COMPLEX VAR ELLIPTIC, V52, P785