Left-symmetric conformal algebras and vertex algebras

被引:24
作者
Hong, Yanyong [1 ,2 ]
Li, Fang [2 ]
机构
[1] Zhejiang Agr & Forestry Univ, Coll Sci, Hangzhou 311300, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
YANG-BAXTER EQUATION; AFFINE GEOMETRY; COHOMOLOGY; WITT;
D O I
10.1016/j.jpaa.2014.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex algebra is an algebraic counterpart of a two-dimensional conformal field theory. By an equivalent characterization of vertex algebra using Lie conformal algebra and left-symmetric algebra given by Bakalov and Kac in [3], in studying vertex algebra, we have to deal with such a question: Do there exist compatible left-symmetric algebra structures on a class of special Lie algebras named formal distribution Lie algebras? In this paper, we study this question. We introduce the definitions of left-symmetric conformal algebra and Novikov conformal algebra. Many examples of these algebras are obtained. As an application, we present a construction of vertex algebra using left-symmetric conformal algebra. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:3543 / 3567
页数:25
相关论文
共 48 条
[1]   A further study on non-abelian phase spaces: Left-symmetric algebraic approach and related geometry [J].
Bai, Chengming .
REVIEWS IN MATHEMATICAL PHYSICS, 2006, 18 (05) :545-564
[2]   Cohomology of conformal algebras [J].
Bakalov, B ;
Kac, VG ;
Voronov, AA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) :561-598
[3]   Theory of finite pseudoalgebras [J].
Bakalov, B ;
D'Andrea, A ;
Kac, VG .
ADVANCES IN MATHEMATICS, 2001, 162 (01) :1-140
[4]  
Bakalov B, 2003, INT MATH RES NOTICES, V2003, P123
[5]  
BALINSKII AA, 1985, DOKL AKAD NAUK SSSR+, V283, P1036
[6]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[8]   GENERALIZED LAX PAIRS, THE MODIFIED CLASSICAL YANG-BAXTER EQUATION, AND AFFINE GEOMETRY OF LIE-GROUPS [J].
BORDEMANN, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :201-216
[9]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323
[10]  
Cayley A., 1890, Collected Mathematical Papers of Arthur Cayley, V3, P242