Improved wall model treatment for aerodynamic flows in LBM

被引:23
作者
Degrigny, Johan [1 ,2 ]
Cai, Shang-Gui [3 ]
Boussuge, Jean- Francois- [1 ]
Sagaut, Pierre [3 ]
机构
[1] CERFACS, 42 Ave Gaspard Coriolis, F-31057 Toulouse, France
[2] Airbus Operat SAS, 316 Route Bayonne, F-31060 Toulouse, France
[3] Aix Marseille Univ, CNRS, Cent Marseille, M2P2,UMR 7340, F-13451 Marseille, France
关键词
Lattice Boltzmann method; Immersed boundaries; Wall model; Wall function; High Reynolds number; Reynolds-Averaged Navier-Stokes; LATTICE BOLTZMANN METHOD; LARGE-EDDY SIMULATION; ALLMARAS TURBULENCE MODEL; IMMERSED BOUNDARY METHOD; REYNOLDS-NUMBERS; PREDICTION; FLUID; POWERFLOW; AIRFOIL;
D O I
10.1016/j.compfluid.2021.105041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article deals with an improved treatment of wall models for the simulation of turbulent flows in the framework of Immersed Wall Boundaries on Cartesian grids. The emphasis is put on the implementa-tion in a Lattice-Boltzmann Method solver without loss of generality, since the proposed approach can be used in Navier-Stokes-based solvers in a straightforward way. The proposed improved wall model im-plementation relies on the combination of several key elements, namely i) the removal of grid points too close to the solid surface and ii) an original computation of wall normal velocity gradient and iii) the interpolation scheme. The new method is successfully assessed considering URANS simulations focusing on steady solutions of the Zero Pressure Gradient turbulent flat plate boundary layer and the turbulent flow around a NACA0012 airfoil at several angles of attack. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 77 条
[11]   Simulations of laminar and turbulent flows over periodic hills with immersed boundary method [J].
Chang, Po-Hua ;
Liao, Chuan-Chieh ;
Hsu, Hsin-Wei ;
Liu, Shih-Huang ;
Lin, Chao-An .
COMPUTERS & FLUIDS, 2014, 92 :233-243
[12]   COMPUTATIONAL AERODYNAMICS DEVELOPMENT AND OUTLOOK [J].
CHAPMAN, DR .
AIAA JOURNAL, 1979, 17 (12) :1293-1313
[13]   Realization of fluid boundary conditions via discrete Boltzmann dynamics [J].
Chen, HD ;
Teixeira, C ;
Molvig, K .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08) :1281-1292
[14]   Grid-point requirements for large eddy simulation: Chapman's estimates revisited [J].
Choi, Haecheon ;
Moin, Parviz .
PHYSICS OF FLUIDS, 2012, 24 (01)
[15]   Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method [J].
Di Ilio, G. ;
Chiappini, D. ;
Ubertini, S. ;
Bella, G. ;
Succi, S. .
COMPUTERS & FLUIDS, 2018, 166 :200-208
[16]   Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations [J].
Fadlun, EA ;
Verzicco, R ;
Orlandi, P ;
Mohd-Yusof, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) :35-60
[17]   Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows [J].
Feng, Y. ;
Guo, S. ;
Jacob, J. ;
Sagaut, P. .
PHYSICS OF FLUIDS, 2019, 31 (12)
[18]   Grid refinement for lattice-BGK models [J].
Filippova, O ;
Hanel, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :219-228
[19]   Multiscale lattice Boltzmann schemes with turbulence modeling [J].
Filippova, O ;
Succi, S ;
Mazzocco, F ;
Arrighetti, C ;
Bella, G ;
Hänel, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :812-829
[20]   The cumulant lattice Boltzmann equation in three dimensions: Theory and validation [J].
Geier, Martin ;
Schoenherr, Martin ;
Pasquali, Andrea ;
Krafczyk, Manfred .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) :507-547