Optimal pebbling of graphs

被引:7
作者
Muntz, Jessica [1 ]
Narayan, Sivaram
Streib, Noah
Van Ochten, Kelly
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48858 USA
[2] Oberlin Coll, Dept Math, Oberlin, OH 44074 USA
关键词
simple graph; diameter; optimal pebbling number; bounds;
D O I
10.1016/j.disc.2006.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a distribution of pebbles on the vertices of a graph G. A pebbling move consists of the removal of two pebbles from a vertex and then placing one pebble at an adjacent vertex. The optimal pebbling number of G, denoted f(opt) (G), is the least number of pebbles, such that for some distribution of f(opt)(G) pebbles, a pebble can be moved to any vertex of G. We give sharp lower and upper bounds for f(opt)(G) for G of diameter d. For graphs of diameter two (respectively, three) we characterize the classes of graphs having f(opt)(G) equal to a value between 2 and 4 (respectively, between 3 and 8). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2315 / 2321
页数:7
相关论文
共 6 条
[1]  
BUNDE DP, 2005, PEBBLING OPTIMAL PEB
[2]  
Chung F. R. K., 1989, SIAM J DISCRETE MATH, V2, P467, DOI [10.1137/0402041, DOI 10.1137/0402041]
[3]  
Hurlbert G. H., 1999, Congressus Numerantium, V139, P41, DOI [10.48550/arXiv.math/0406024, DOI 10.48550/ARXIV.MATH/0406024]
[4]  
PATCHER L, 1995, P 26 SE INT C COMB G, V107, P65
[5]  
West D. B., 2001, INTRO GRPAH THEORY
[6]  
WYELS C, 2003, OPTIMAL PEBBLING PAT