Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries

被引:52
作者
Huang, Jia-Qi [1 ,2 ]
Zhai, Pei-Yan [1 ,3 ]
Peng, Hong-Jie [1 ]
Zhu, Wan-Cheng [3 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Qufu Normal Univ, Dept Chem Engn, Jining 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur battery; Nanostructured current collectors; Polysulfides; Energy efficiency; Pouch cell; CYCLING STABILITY; GRAPHENE; CATHODE; PERFORMANCE; ELECTRODE; COMPOSITE; SURFACE; POLYSULFIDES; TEMPLATES; SCAFFOLDS;
D O I
10.1016/j.scib.2017.09.007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demonstrated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (Al) foil current collectors. The interfacial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113 mAh g(-1) at 0.5 C, which is similar to 300 mAh g(-1) higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the Al/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O-2 batteries, fuel cells, and flow batteries). (C) 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:1267 / 1274
页数:8
相关论文
共 58 条
[1]   Investigation of surface effects through the application of the functional binders in lithium sulfur batteries [J].
Ai, Guo ;
Dai, Yiling ;
Ye, Yifan ;
Mao, Wenfeng ;
Wang, Zhihui ;
Zhao, Hui ;
Chen, Yulin ;
Zhu, Junfa ;
Fu, Yanbao ;
Battaglia, Vincent ;
Guo, Jinghua ;
Srinivasan, Venkat ;
Liu, Gao .
NANO ENERGY, 2015, 16 :28-37
[2]   3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Su, Dawei ;
Zhang, Wenxue ;
Guo, Xin ;
Wang, Guoxiu .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (47) :8746-8756
[3]   Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials [J].
Chen, Renjie ;
Luo, Rui ;
Huang, Yongxin ;
Wu, Feng ;
Li, Li .
ADVANCED SCIENCE, 2016, 3 (10)
[4]   Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium sulfur batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhu, Lin ;
Yang, Shu-Hui ;
Liu, Yuan ;
Zhang, Hua-Wei ;
Zhu, Wancheng ;
Wei, Fei ;
Zhang, Qiang .
JOURNAL OF POWER SOURCES, 2014, 261 :264-270
[5]   Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Zhao, Meng-Qiang ;
Wei, Fei .
NANO ENERGY, 2014, 4 :65-72
[6]   A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
ACS NANO, 2016, 10 (11) :10462-10470
[7]   Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
SMALL, 2016, 12 (07) :939-950
[8]   Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector [J].
Doberdo, Italo ;
Loeffler, Nicholas ;
Laszczynski, Nina ;
Cericola, Dario ;
Penazzi, Nerino ;
Bodoardo, Silvia ;
Kim, Guk-Tae ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2014, 248 :1000-1006
[9]   Graphene: a promising 2D material for electrochemical energy storage [J].
Dong, Yanfeng ;
Wu, Zhong-Shuai ;
Ren, Wencai ;
Cheng, Hui-Ming ;
Bao, Xinhe .
SCIENCE BULLETIN, 2017, 62 (10) :724-740
[10]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+