Infinitely many homoclinic orbits for the second-order Hamiltonian systems

被引:71
作者
Zou, WM
Li, SJ
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
homoclinic orbits; new fountain theorem; Hamiltonian systems;
D O I
10.1016/S0893-9659(03)90130-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of homoclinic orbits for the second-order Hamiltonian systems without periodicity is studied and infinitely many homoclinic orbits for both superlinear and asymptotically linear cases are obtained. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1283 / 1287
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1996, CHIN J MATH
[2]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[3]  
Chen C.N., 1997, ELECT J DIFFERENTIAL, P1
[4]  
COTIZELATI V, 1991, J AM MATH SOC, V4, P693
[6]  
Omana W., 1992, DIFFERENTIAL INTEGRA, V5, P1115
[7]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[8]   On the existence of homoclinic solutions for almost periodic second order systems [J].
Serra, E ;
Tarallo, M ;
Terracini, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06) :783-812
[9]   Homoclinic orbits for asymptotically linear Hamiltonian systems [J].
Szulkin, A ;
Zou, WM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) :25-41
[10]   Variant fountain theorems and their applications [J].
Zou, W .
MANUSCRIPTA MATHEMATICA, 2001, 104 (03) :343-358