Nonminimally coupled scalar fields may not curve spacetime -: art. no. 104037

被引:70
作者
Ayón-Beato, E
Martínez, C
Troncoso, R
Zanelli, J
机构
[1] Ctr Estudios Cient, Valdivia 1469, Chile
[2] IPN, CINVESTAV, Dept Fis, Mexico City 07000, DF, Mexico
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 10期
关键词
D O I
10.1103/PhysRevD.71.104037
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum.
引用
收藏
页数:4
相关论文
共 9 条
[1]   Note on scalar fields non-minimally coupled to (2+1)-gravity [J].
Ayón-Beato, E ;
García, A ;
Macías, A ;
Pérez-Sánchez, JM .
PHYSICS LETTERS B, 2000, 495 (1-2) :164-168
[2]  
AYONBEATO E, HEPTH0403228, P63
[3]   A NEW IMPROVED ENERGY-MOMENTUM TENSOR [J].
CALLAN, CG ;
COLEMAN, S ;
JACKIW, R .
ANNALS OF PHYSICS, 1970, 59 (01) :42-&
[4]  
Carroll L., 1865, Alice's Adventures in Wonderland
[5]   IMPROVEMENT VERSUS STABILITY IN GRAVITY SCALAR COUPLING [J].
DESER, S .
PHYSICS LETTERS B, 1984, 134 (06) :419-421
[6]  
DESER S, 1970, AN PHYS NY, V59, P148
[7]   Finite action for three dimensional gravity with a minimally coupled scalar field -: art. no. 084007 [J].
Gegenberg, J ;
Martínez, C ;
Troncoso, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[8]  
Henneaux M, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.104007
[9]   Three-dimensional gravity with a conformal scalar field and asymptotic Virasoro algebra [J].
Natsuume, M ;
Okamura, T ;
Sato, M .
PHYSICAL REVIEW D, 2000, 61 (10)