Terahertz magneto-optical properties of graphene hydrodynamic electron liquid

被引:5
作者
Man, L. F. [1 ,2 ]
Xu, W. [1 ,2 ,3 ,4 ]
Xiao, Y. M. [1 ,2 ]
Wen, H. [4 ]
Ding, L. [1 ,2 ]
Van Duppen, B. [5 ]
Peeters, F. M. [1 ,2 ,5 ]
机构
[1] Yunnan Univ, Sch Phys & Astron, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Univ, Yunnan Key Lab Quantum Informat, Kunming 650091, Yunnan, Peoples R China
[3] Micro Opt Instruments Inc, Shenzhen 518118, Peoples R China
[4] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[5] Univ Antwerp, Dept Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
基金
中国国家自然科学基金;
关键词
TRANSPORT; PLASMONS;
D O I
10.1103/PhysRevB.104.125420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.
引用
收藏
页数:8
相关论文
共 48 条
[1]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[2]  
[Anonymous], 1966, COURSE THEORETICAL P
[3]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[4]  
Baym G., 1991, Landau Fermi-Liquid Theory: Concepts and Applications, V1st
[5]   Measuring Hall viscosity of graphene's electron fluid [J].
Berdyugin, A. I. ;
Xu, S. G. ;
Pellegrino, F. M. D. ;
Kumar, R. Krishna ;
Principi, A. ;
Torre, I. ;
Ben Shalom, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Grigorieva, I. V. ;
Polini, M. ;
Geim, A. K. ;
Bandurin, D. A. .
SCIENCE, 2019, 364 (6436) :163-+
[6]   Optoelectronic Properties of Monolayer Hexagonal Boron Nitride on Different Substrates Measured by Terahertz Time-Domain Spectroscopy [J].
Bilal, Muhammad ;
Xu, Wen ;
Wang, Chao ;
Wen, Hua ;
Zhao, Xinnian ;
Song, Dan ;
Ding, Lan .
NANOMATERIALS, 2020, 10 (04)
[7]   INFRARED MAGNETO-TRANSMITTANCE OF A 2-DIMENSIONAL ELECTRON-GAS [J].
CHIU, KW ;
LEE, TK ;
QUINN, JJ .
SURFACE SCIENCE, 1976, 58 (01) :182-184
[8]   Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene [J].
Crassee, I. ;
Orlita, M. ;
Potemski, M. ;
Walter, A. L. ;
Ostler, M. ;
Seyller, Th. ;
Gaponenko, I. ;
Chen, J. ;
Kuzmenko, A. B. .
NANO LETTERS, 2012, 12 (05) :2470-2474
[9]   Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene [J].
Crossno, Jesse ;
Shi, Jing K. ;
Wang, Ke ;
Liu, Xiaomeng ;
Harzheim, Achim ;
Lucas, Andrew ;
Sachdev, Subir ;
Kim, Philip ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Ohki, Thomas A. ;
Fong, Kin Chung .
SCIENCE, 2016, 351 (6277) :1058-1061
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726