Janus balance of amphiphilic colloidal particles

被引:113
作者
Jiang, Shan [1 ]
Granick, Steve
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
关键词
D O I
10.1063/1.2803420
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce the notion of "Janus balance" (J), defined as the dimensionless ratio of work to transfer an amphiphilic colloidal particle (a "Janus particle") from the oil-water interface into the oil phase, normalized by the work needed to move it into the water phase. The J value can be calculated simply from the interfacial contact angle and the geometry of Janus particles, without the need to know the interfacial energy. It is demonstrated that Janus particles of the same chemical composition but different geometries will have the highest adsorption energy when J=1. Even for particles of homogeneous chemical makeup, the Janus balance concept can be applied when considering the contact angle hysteresis in desorbing the particle from equilibrium into the water or oil phase. The Janus balance concept may enable predictions of how a Janus particle behaves with respect to efficiency and function as a solid surfactant, as the Janus balance of solid surfactants is the analog of the classical hydrophile-lipophile balance of small surfactant molecules. (C) 2007 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 38 条
[1]   Premelting at defects within bulk colloidal crystals [J].
Alsayed, AM ;
Islam, MF ;
Zhang, J ;
Collings, PJ ;
Yodh, AG .
SCIENCE, 2005, 309 (5738) :1207-1210
[2]   Status of the three-phase line tension [J].
Amirfazli, A ;
Neumann, AW .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2004, 110 (03) :121-141
[3]   Aspects of the stabilisation of emulsions by solid particles: Effects of line tension and monolayer curvature energy [J].
Aveyard, R ;
Clint, JH ;
Horozov, TS .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (11) :2398-2409
[4]   Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant [J].
Binks, Bernard P. ;
Rodrigues, Jhonny A. ;
Frith, William J. .
LANGMUIR, 2007, 23 (07) :3626-3636
[5]   Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant [J].
Binks, Bernard P. ;
Desforges, Alexandre ;
Duff, Daniel G. .
LANGMUIR, 2007, 23 (03) :1098-1106
[6]   Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles [J].
Binks, BP ;
Fletcher, PDI .
LANGMUIR, 2001, 17 (16) :4708-4710
[7]   Solid wettability from surface energy components: Relevance to pickering emulsions [J].
Binks, BP ;
Clint, JH .
LANGMUIR, 2002, 18 (04) :1270-1273
[8]   Influence of particle wettability on the type and stability of surfactant-free emulsions [J].
Binks, BP ;
Lumsdon, SO .
LANGMUIR, 2000, 16 (23) :8622-8631
[9]   JANUS BEADS - REALIZATION AND BEHAVIOR AT WATER OIL INTERFACES [J].
CASAGRANDE, C ;
FABRE, P ;
RAPHAEL, E ;
VEYSSIE, M .
EUROPHYSICS LETTERS, 1989, 9 (03) :251-255
[10]   Surface-anisotropic polystyrene spheres by electroless deposition [J].
Cui, Jing-Qin ;
Kretzschmar, Ilona .
LANGMUIR, 2006, 22 (20) :8281-8284