Central binomial sums, multiple Clausen values, and zeta values

被引:59
作者
Borwein, JM [1 ]
Broadhurst, DJ
Kamnitzer, J
机构
[1] Simon Fraser Univ, Dept Math & Stat, Shrum Chair Sci, Burnaby, BC V5A 1S6, Canada
[2] Open Univ, Dept Phys, Milton Keynes MK7 6AA, Bucks, England
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G6, Canada
关键词
binomial sums; multiple zeta values; log-sine integrals; Clausen's function; multiple Clausen values; polylogarithms; Apery sums;
D O I
10.1080/10586458.2001.10504426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find and prove relationships between Riemann zeta values and central binomial sums. We also investigate alternating binomial sums (also called Apery sums). The study of nonalternating sums leads to an investigation of different types of sums which we call multiple Clausen values. The study of alternating sums leads to a tower of experimental results involving polylogarithms in the golden ratio.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 17 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS F
  • [2] [Anonymous], 1992, EXP MATH
  • [3] BAILEY DH, 1999, 17 ORDER POLYLOGARIT
  • [4] BAILEY DH, 2001, MATH COMP
  • [5] BAILEY DH, 2000, MATH ULIMITED 2001
  • [6] Borwein J. M., 1987, PI AGM STUDY ANAL NU
  • [7] Borwein J. M., 1997, ELECT J COMBIN, V4, P5
  • [8] Special values of multiple polylogarithms
    Borwein, JM
    Bradley, DM
    Broadhurst, DJ
    Lisonek, P
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (03) : 907 - 941
  • [9] Applications of integer relation algorithms
    Borwein, JM
    Lisonek, P
    [J]. DISCRETE MATHEMATICS, 2000, 217 (1-3) : 65 - 82
  • [10] Computational strategies for the Riemann zeta function
    Borwein, JM
    Bradley, DM
    Crandall, RE
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) : 247 - 296