Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method

被引:13
作者
Zhang, Qing-Yu [1 ]
Sun, Dong-Ke [2 ,3 ]
Zhang, You-Fa [1 ]
Zhu, Ming-Fang [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
[2] Purdue Univ, Dept Mech Engn Technol, 401 North Grant St, W Lafayette, IN 47907 USA
[3] Shanghai Jiao Tong Univ, Shanghai Key Lab Adv High Temp Mat & Precis Formi, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
condensate droplet; superhydrophobic nanoarray; wettability; lattice Boltzmann method; WATER CONDENSATION; SURFACES; SIMULATION; FLOW;
D O I
10.1088/1674-1056/25/6/066401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present study, the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model. The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays. Droplets nucleated at the top (top-nucleation mode), or in the upside interpillar space of nanoarrays (side-nucleation mode), generate the non-wetting Cassie state, whereas the ones nucleated at the bottom corners between the nanoarrays (bottom-nucleation mode) present the wetting Wenzel state. Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes. The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated, indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface. The simulation results are compared well with the experimental observations reported in the literature.
引用
收藏
页数:6
相关论文
共 40 条
[1]   Dropwise condensation on superhydrophobic surfaces with two-tier roughness [J].
Chen, Chuan-Hua ;
Cai, Qingjun ;
Tsai, Chialun ;
Chen, Chung-Lung ;
Xiong, Guangyong ;
Yu, Ying ;
Ren, Zhifeng .
APPLIED PHYSICS LETTERS, 2007, 90 (17)
[2]   Lattice Boltzmann Simulation for Complex Flow in a Solar Wall [J].
Chen Rou ;
Shao Jiu-Gu ;
Zheng You-Qu ;
Yu Hui-Dan ;
Xu You-Sheng .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) :370-374
[3]   Condensation and wetting transitions on microstructured ultrahydrophobic surfaces [J].
Dorrer, Christian ;
Ruehe, Juergen .
LANGMUIR, 2007, 23 (07) :3820-3824
[4]   Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit [J].
Esfahanian, Vahid ;
Dehdashti, Esmaeil ;
Dehrouye-Semnani, Amir Mehdi .
CHINESE PHYSICS B, 2014, 23 (08)
[5]   Induced Detachment of Coalescing Droplets on Superhydrophobic Surfaces [J].
Farhangi, Mehran M. ;
Graham, Percival J. ;
Choudhury, N. Roy ;
Dolatabadi, Ali .
LANGMUIR, 2012, 28 (02) :1290-1303
[6]   Numerical Simulation of Condensation on Structured Surfaces [J].
Fu, Xiaowu ;
Yao, Zhaohui ;
Hao, Pengfei .
LANGMUIR, 2014, 30 (46) :14048-14055
[7]   Small droplets on superhydrophobic substrates [J].
Gross, Markus ;
Varnik, Fathollah ;
Raabe, Dierk ;
Steinbach, Ingo .
PHYSICAL REVIEW E, 2010, 81 (05)
[8]   Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces [J].
Guo, Peng ;
Zheng, Yongmei ;
Wen, Mengxi ;
Song, Cheng ;
Lin, Yucai ;
Jiang, Lei .
ADVANCED MATERIALS, 2012, 24 (19) :2642-2648
[9]   Condensation of droplets on nanopillared hydrophobic substrates [J].
Guo, Qiumin ;
Liu, Yawei ;
Jiang, Guangfeng ;
Zhang, Xianren .
SOFT MATTER, 2014, 10 (08) :1182-1188
[10]   Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J].
Guo, ZL ;
Zheng, CG ;
Shi, BC .
CHINESE PHYSICS, 2002, 11 (04) :366-374