Plethystic algebra

被引:27
作者
Borger, J [1 ]
Wieland, B [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
ring scheme; Witt vector; Witt ring; symmetric function; bialgebra; Lambda-ring; delta-ring; plethory; biring;
D O I
10.1016/j.aim.2004.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a Z-algebra has a non-linear analogue, whose purpose it is to control operations on commutative rings rather than linear operations on abelian groups. These plethories can also be considered non-linear generalizations of cocommutative bialgebras. We establish a number of category-theoretic facts about plethories and their actions, including a Tannaka-Krein-style reconstruction theorem. We show that the classical ring of Witt vectors, with all its concomitant structure, can be understood in a formula-free way in terms of a plethystic version of an affine blow-up applied to the plethory generated by the Frobenius map. We also discuss the linear and infinitesimal structure of plethories and explain how this gives Bloch's Frobenius operator on the de Rhant-Witt complex. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 283
页数:38
相关论文
共 22 条
[1]  
[Anonymous], 1998, COLLECTED PAPERS GES
[2]  
Atiyah M.F., 1969, Topology, V8, P253, DOI 10.1016/0040-9383(69)90015-9
[3]  
BERGMAN GM, 1996, MATH SURVEYS MONOGRA, V45, pR1
[4]   Bialgebroids, XA-bialgebras and duality [J].
Brzezinski, T ;
Militaru, G .
JOURNAL OF ALGEBRA, 2002, 251 (01) :279-294
[5]  
CARTIER P, 1967, CR ACAD SCI A MATH, V265, P49
[6]  
Dascalescu S., 2001, MONOGRAPHS TXB PURE, V235
[7]  
Deligne P, 1996, CR ACAD SCI I-MATH, V322, P321
[8]  
FONTAINE JM, 1994, ASTERISQUE, P59
[9]  
Hazewinkel M., 1978, Pure Appl. Math., V78
[10]  
ILLUSIE L, 1979, ANN SCI ECOLE NORM S, V12, P501