Scalable quantum computing with qudits on a graph

被引:41
作者
Kiktenko, E. O. [1 ,2 ,3 ]
Nikolaeva, A. S. [1 ,3 ]
Xu, Peng [4 ,5 ]
Shlyapnikov, G., V [1 ,3 ,6 ,7 ,8 ,9 ]
Fedorov, A. K. [1 ,3 ]
机构
[1] Russian Quantum Ctr, Moscow 143025, Russia
[2] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[4] Chinese Acad Sci, Wuhan Natl Lab Optoelect, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[5] Chinese Acad Sci, Ctr Cold Atom Phys, Wuhan 430071, Peoples R China
[6] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS, F-91405 Orsay, France
[7] Univ Paris Saclay, CEA Saclay, CEA, SPEC, F-91191 Gif Sur Yvette, France
[8] Univ Paris Saclay, CEA Saclay, CNRS, F-91191 Gif Sur Yvette, France
[9] Univ Amsterdam, Inst Phys, Van der Waals Zeeman Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
欧洲研究理事会; 俄罗斯科学基金会;
关键词
REALIZATION; SPIN;
D O I
10.1103/PhysRevA.101.022304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show a significant reduction of the number of quantum operations and the improvement of the circuit depth for the realization of the Toffoli gate by using qudits. This is done by establishing a general relation between the dimensionality of qudits and their topology of connections for a scalable multiqudit processor, where higher qudit levels are used for substituting ancillas. The suggested model is of importance for the realization of quantum algorithms and as a method of quantum error correction codes for single-qubit operations.
引用
收藏
页数:7
相关论文
共 56 条
[1]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[2]   Minimal measurements of the gate fidelity of a qudit map -: art. no. 014303 [J].
Bagan, E ;
Baig, M ;
Muñoz-Tapia, R .
PHYSICAL REVIEW A, 2003, 67 (01) :3
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]   Synthetic three-dimensional atomic structures assembled atom by atom [J].
Barredo, Daniel ;
Lienhard, Vincent ;
De Leseleuc, Sylvain ;
Lahaye, Thierry ;
Browaeys, Antoine .
NATURE, 2018, 561 (7721) :79-82
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]   Efficient topological compilation for a weakly integral anyonic model [J].
Bocharov, Alex ;
Cui, Xingshan ;
Kliuchnikov, Vadym ;
Wang, Zhenghan .
PHYSICAL REVIEW A, 2016, 93 (01)
[7]   Multiphoton dressing of an anharmonic superconducting many-level quantum circuit [J].
Braumueller, Jochen ;
Cramer, Joel ;
Schloer, Steffen ;
Rotzinger, Hannes ;
Radtke, Lucas ;
Lukashenko, Alexander ;
Yang, Ping ;
Skacel, Sebastian T. ;
Probst, Sebastian ;
Marthaler, Michael ;
Guo, Lingzhen ;
Ustinov, Alexey V. ;
Weides, Martin .
PHYSICAL REVIEW B, 2015, 91 (05)
[8]   Optimal eavesdropping in cryptography with three-dimensional quantum states [J].
Bruss, D ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4
[9]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[10]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155