On a supersymmetric nonlinear integrable equation in (2+1) dimensions

被引:2
作者
Yin, Zhigang [1 ,2 ]
Yu, Lu [3 ]
Li, Minli [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Jiujiang Univ, Coll Sci, Jiujiang 332005, Jiangxi, Peoples R China
[3] Jiangxi Ind Polytech Coll, Econ Management Branch, Nanchang 330039, Peoples R China
基金
美国国家科学基金会;
关键词
Integrable systems; supersymmetry; super Lie algebra; KORTEWEG-DEVRIES EQUATION; DE-VRIES EQUATION; FIELD-THEORIES; SYMMETRIES; EXTENSIONS; HIERARCHY; ALGEBRAS;
D O I
10.1080/14029251.2015.1023581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A supersymmetric integrable equation in (2+1) dimensions is constructed by means of the approach of the homogenous space of the super Lie algebra, where the super Lie algebra osp(3/2) is considered. For this (2+1) dimensional integrable equation, we also derive its Backlund transformation.
引用
收藏
页码:204 / 209
页数:6
相关论文
共 22 条
[1]   A lattice approach to the conformal OSp(2S+2|2S) supercoset sigma model. Part II: The boundary spectrum [J].
Candu, Constantin ;
Saleur, Hubert .
NUCLEAR PHYSICS B, 2009, 808 (03) :487-524
[2]   On osp(2/2) conformal field theories [J].
Ding, XM ;
Gould, MD ;
Mewton, CJ ;
Zhang, YZ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (27) :7649-7665
[3]   NON-LINEAR SCHRODINGER-EQUATIONS AND SIMPLE LIE-ALGEBRAS [J].
FORDY, AP ;
KULISH, PP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (03) :427-443
[4]   Integrable higher order deformations of Heisenberg supermagnetic model [J].
Guo, Jia-Feng ;
Wang, Shi-Kun ;
Wu, Ke ;
Yan, Zhao-Wen ;
Zhao, Wei-Zhong .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
[5]   A SUPER KORTEWEG-DE-VRIES EQUATION - AN INTEGRABLE SYSTEM [J].
KUPERSHMIDT, BA .
PHYSICS LETTERS A, 1984, 102 (5-6) :213-215
[6]   DARBOUX TRANSFORMATIONS FOR SUPERSYMMETRIC KORTEWEG-DE VRIES EQUATIONS [J].
LIU, QP .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (02) :115-122
[7]   Bilinearization of N=1 supersymmetric Korteweg-de Vries equation revisited [J].
Liu, QP ;
Hu, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (28) :6371-6378
[8]   Nonlinear superposition formula for N=1 supersymmetric KdV equation [J].
Liu, QP ;
Xie, YF .
PHYSICS LETTERS A, 2004, 325 (02) :139-143
[9]   CONTINUAL CLASSICAL HEISENBERG MODELS DEFINED ON GRADED SU(2,1) AND SU(3) ALGEBRAS [J].
MAKHANKOV, VG ;
PASHAEV, OK .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) :2923-2936
[10]   A SUPERSYMMETRIC EXTENSION OF THE KADOMTSEV-PETVIASHVILI HIERARCHY [J].
MANIN, YI ;
RADUL, AO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 98 (01) :65-77