Structure-property correlation in a novel ZrB2-SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive

被引:10
作者
Sengupta, P. [1 ,2 ]
Basu, S. [2 ,3 ]
Manna, I [1 ,4 ]
机构
[1] Indian Inst Technol IIT Kharagpur, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
[2] CSIR Inst Minerals & Mat Technol, Bhubaneswar 751013, India
[3] Indian Inst Technol IIT Delhi, Dept Chem Engn, New Delhi 110016, India
[4] Birla Inst Technol BIT Mesra, Ranchi 835215, Bihar, India
关键词
THERMAL-SHOCK RESISTANCE; MECHANICAL-PROPERTIES; ZIRCONIUM DIBORIDE; FRACTURE-TOUGHNESS; RAMAN-SPECTROSCOPY; RESIDUAL-STRESSES; SILICON-CARBIDE; MICROSTRUCTURE; OXIDATION; DENSIFICATION;
D O I
10.1007/s10853-021-06427-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the effect of minor (5 vol.%) addition of Al-10Si-0.2Mg (composition in wt.%) pre-alloyed powder on densification, microstructure and mechanical behaviour of spark plasma-sintered ZrB2-20 vol.% SiC composite has been investigated. The sintered composite records a relative density of 99.83% despite being processed at a relatively low temperature (1700 degrees C) in argon atmosphere. Interestingly, ZrB2-20SiC-5AlSiMg composite does not undergo any shape distortion though the liquidus temperature of this metallic alloy additive is quite low (similar to 592 degrees C). Extensive phase and microstructure analyses by appropriate techniques indicate that no free or unreacted AlSiMg is detected in the sintered composite. Thermodynamic analysis suggests that AlSiMg serves as a reducing agent for ZrO2 oxide scale and forms respective high-melting oxide phases. Raman analysis confirms that incorporation of 5 vol.% AlSiMg enhances residual compressive stress of SiC grains. Furthermore, the addition of AlSiMg is found to enhance the thermal shock resistance of the composite. In brief, this new AlSiMg additive results in better densification (99.83%) and hence an attractive combination of useful mechanical properties like Vickers microhardness (17.63 +/- 0.54 GPa), nano-hardness (18.62 +/- 1.23 GPa), indentation fracture toughness (7.21 +/- 1.13 root M), elastic modulus (432.64 +/- 32.90 GPa) and flexural strength (659.25 +/- 32.40 MPa) in the AlSiMg-added ZrB2-20SiC composite.
引用
收藏
页码:19029 / 19046
页数:18
相关论文
共 80 条
[1]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[2]   Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite [J].
Ariharan, S. ;
Sengupta, Pradyut ;
Nisar, Ambreen ;
Agnihotri, Ankur ;
Balaji, N. ;
Aruna, S. T. ;
Balani, Kantesh .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2017, 26 (03) :417-431
[3]   Nanoindentation and nanostructural characterization of ZrB2-SiC composite doped with graphite nano-flakes [J].
Asl, Mehdi Shahedi ;
Nayebi, Behzad ;
Motallebzadeh, Amir ;
Shokouhimehr, Mohammadreza .
COMPOSITES PART B-ENGINEERING, 2019, 175
[4]  
Callister, 2013, CALLISTERS MAT SCI E
[5]   High-strength zirconium diboride-based ceramics [J].
Chamberlain, AL ;
Fahrenholtz, WG ;
Hilmas, GE ;
Ellerby, DT .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (06) :1170-1172
[6]   Mechanical properties of individual phases of ZrB2-ZrC eutectic composite measured by nanoindentation [J].
Cheng, Eric Jianfeng ;
Li, Ying ;
Sakamoto, Jeff ;
Han, Shaobo ;
Sun, Haiping ;
Noble, Jacob ;
Katsui, Hirokazu ;
Goto, Takashi .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (13) :4223-4227
[7]   Young's modulus and volume porosity relationships for additive manufacturing applications [J].
Choren, J. A. ;
Heinrich, S. M. ;
Silver-Thorn, M. B. .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (15) :5103-5112
[8]   Slip activation controlled nanohardness anisotropy of ZrB2 ceramic grains [J].
Csanadi, Tamas ;
Kovalcikova, Alexandra ;
Dusza, Jan ;
Fahrenholtz, William G. ;
Hilmas, Gregory E. .
ACTA MATERIALIA, 2017, 140 :452-464
[9]  
Cullity B.D., 1956, ELEMENTS XRAY DIFFRA
[10]  
Cutler RA., 1991, Engineering Properties of Borides. Vol. IV