Image and signal processing with mathematical morphology

被引:24
作者
Bangham, JA [1 ]
Marshall, S [1 ]
机构
[1] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
来源
ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL | 1998年 / 10卷 / 03期
关键词
D O I
10.1049/ecej:19980305
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mathematical morphology is the analysis of signals and images in terms of shape. Much is based on simple positive Boolean functions that are used to produce filters for binary and greyscale signals and images, In a recent development, the standard operators are applied to connected sets that form maxima and minima. These are new, powerful, general tools for analysing and representing images.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 19 条
[1]  
BABAUD M, 1986, IEEE T PATTERN ANAL, V8, P532
[2]   Morphological scale-space preserving transforms in many dimensions [J].
Bangham, JA ;
Harvey, R ;
Ling, PD ;
Aldridge, RV .
JOURNAL OF ELECTRONIC IMAGING, 1996, 5 (03) :283-299
[3]   Multiscale recursive medians, scale-space, and transforms with applications to image processing [J].
Bangham, JA ;
Ling, P ;
Young, R .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (06) :1043-1048
[4]   Scale-space from nonlinear filters [J].
Bangham, JA ;
Ling, PD ;
Harvey, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (05) :520-528
[5]  
BANGHAM JA, 1996, IEEE T PATTERN ANAL, V18, P518
[6]  
DOUGHERTY ER, 1994, SPIE
[7]   A THEORETICAL-ANALYSIS OF THE PROPERTIES OF MEDIAN FILTERS [J].
GALLAGHER, NC ;
WISE, GL .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (06) :1136-1141
[8]  
HARVEY NR, 1997, INT C IM PROC ICIP 9
[9]  
HARVEY R, 1997, BRIT MACH VIS C, P11
[10]  
Lindeberg T., 2013, Scale-space theory in computer vision, V256