Energy-Efficient Photonic Memory Cell with Spatially Separated Recording/Erasing and Readout Channels

被引:1
作者
Makarov, Mikhail [1 ]
Minnullin, Ramil [1 ,2 ]
Sapegin, Alexander [1 ,2 ]
Korolev, Dmitry [1 ,3 ]
机构
[1] JSC Mol Elect Res Inst, Radio Photon Lab, Moscow 124460, Zelenograd, Russia
[2] Moscow Inst Phys & Technol, Phystech Sch Elect Photon & Mol Phys, Dolgoprudnyi 141701, Russia
[3] Lobachevsky State Univ, Phys Tech Res Inst, Nizhnii Novgorod 603022, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2022年 / 259卷 / 11期
基金
俄罗斯基础研究基金会;
关键词
multimode interference; phase change materials; photonic nonvolatile memory; strip waveguides; VANADIUM DIOXIDE; SILICON; DESIGN; DEVICES;
D O I
10.1002/pssb.202200060
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Phase-change material Ge2Sb2Te5 (GST) is a promising candidate for nonvolatile photonic devices due to its phase stability, different absorption coefficients in the amorphous and crystalline phase, and relatively fast response. Here, an energy-efficient design of a photonic nonvolatile memory that stores its logical status as GST phase states is proposed. The device is based on the silicon-on-insulator (SOI) substrate and consists of the fourfold symmetric strip waveguide crossing incorporated with the square GST patch and a multimode interference (MMI) loop reflector. The distinctive feature of the proposed cell is two spatially separated recording/erasing and readout channels. One of the crossed waveguides is connected to the MMI loop reflector and used for recording/erasing. The other waveguide is used for readout. The numerical simulation of the light transmission through the device in question shows that the MMI loop reflector provides 45% and 80% higher absorption values in comparison with waveguide end reflector and straightforward transmission, respectively. This fact allows the more efficient utilization of the guided mode energy and makes the proposed photonic memory cell an attractive node element for photonic integrated circuits.
引用
收藏
页数:5
相关论文
共 40 条
  • [1] Abrate S., 2015, 2015 17 INTERCONF TR, DOI [10.1109/ICTON.2015.7193715, DOI 10.1109/ICTON.2015.7193715]
  • [2] Electrically controlled 1 x 2 tunable switch using a phase change material embedded silicon microring
    Ali, Nadir
    Panepucci, Roberto R.
    Xie, Yiwei
    Dai, Daoxin
    Kumar, Rajesh
    [J]. APPLIED OPTICS, 2021, 60 (13) : 3559 - 3568
  • [3] Mid-infrared non-volatile silicon photonic switches using nanoscale Ge2Sb2Te5 embedded in silicon-on-insulator waveguides
    Ali, Nadir
    Kumar, Rajesh
    [J]. NANOTECHNOLOGY, 2020, 31 (11)
  • [4] Design of a novel nanoscale high-performance phase-change silicon photonic switch
    Ali, Nadir
    Kumar, Rajesh
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2018, 32 : 81 - 85
  • [5] Quantum circuits with many photons on a programmable nanophotonic chip
    Arrazola, J. M.
    Bergholm, V
    Bradler, K.
    Bromley, T. R.
    Collins, M. J.
    Dhand, I
    Fumagalli, A.
    Gerrits, T.
    Goussev, A.
    Helt, L. G.
    Hundal, J.
    Isacsson, T.
    Israel, R. B.
    Izaac, J.
    Jahangiri, S.
    Janik, R.
    Killoran, N.
    Kumar, S. P.
    Lavoie, J.
    Lita, A. E.
    Mahler, D. H.
    Menotti, M.
    Morrison, B.
    Nam, S. W.
    Neuhaus, L.
    Qi, H. Y.
    Quesada, N.
    Repingon, A.
    Sabapathy, K. K.
    Schuld, M.
    Su, D.
    Swinarton, J.
    Szava, A.
    Tan, K.
    Tan, P.
    Vaidya, V. D.
    Vernon, Z.
    Zabaneh, Z.
    Zhang, Y.
    [J]. NATURE, 2021, 591 (7848) : 54 - +
  • [6] Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition
    Briggs, Ryan M.
    Pryce, Imogen M.
    Atwater, Harry A.
    [J]. OPTICS EXPRESS, 2010, 18 (11): : 11192 - 11201
  • [7] Compact waveguide crossings with a cascaded multimode tapered structure
    Chen, Chyong-Hua
    [J]. APPLIED OPTICS, 2015, 54 (04) : 828 - 833
  • [8] Chrostowski L, 2015, SILICON PHOTONICS DESIGN, P1
  • [9] Ultrafast vibronic phase transitions induced in semiconductors by femtosecond laser pulses
    Emel'yanov, VI
    Babak, DV
    [J]. PHYSICS OF THE SOLID STATE, 1999, 41 (08) : 1338 - 1342
  • [10] Feldmann J., 2021, NATURE, V591, pE13