A modular design of molecular qubits to implement universal quantum gates

被引:197
作者
Ferrando-Soria, Jesus [1 ,2 ]
Pineda, Eufemio Moreno [1 ,2 ]
Chiesa, Alessandro [3 ]
Fernandez, Antonio [1 ,2 ]
Magee, Samantha A. [1 ,2 ]
Carretta, Stefano [3 ]
Santini, Paolo [3 ]
Vitorica-Yrezabal, Inigo J. [1 ,2 ]
Tuna, Floriana [1 ,2 ]
Timco, Grigore A. [1 ,2 ]
McInnes, Eric J. L. [1 ,2 ]
Winpenny, Richard E. P. [1 ,2 ]
机构
[1] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Photon Sci Inst, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] Univ Parma, Dipartimento Fis & Sci Terra, Viale Sci 7-A, I-43123 Parma, Italy
基金
英国工程与自然科学研究理事会;
关键词
SPIN; COMPLEXES; RINGS; DECOHERENCE; COHERENCE; PHYSICS; TIME; ION;
D O I
10.1038/ncomms11377
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The physical implementation of quantum information processing relies on individual modules-qubits-and operations that modify such modules either individually or in groups-quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the root iSWAP gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr7Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or root iSWAP gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate.
引用
收藏
页数:10
相关论文
共 51 条
[41]  
Schubert U.S., 2006, MODERN TERPYRIDINE C
[42]   Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J].
Shor, PW .
SIAM REVIEW, 1999, 41 (02) :303-332
[43]   EasySpin, a comprehensive software package for spectral simulation and analysis in EPR [J].
Stoll, S ;
Schweiger, A .
JOURNAL OF MAGNETIC RESONANCE, 2006, 178 (01) :42-55
[44]   Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system [J].
Tempel, David G. ;
Aspuru-Guzik, Alan .
CHEMICAL PHYSICS, 2011, 391 (01) :130-142
[45]  
Timco GA, 2009, NAT NANOTECHNOL, V4, P173, DOI [10.1038/nnano.2008.404, 10.1038/NNANO.2008.404]
[46]   Molecular engineering of antiferromagnetic rings for quantum computation [J].
Troiani, F ;
Ghirri, A ;
Affronte, M ;
Carretta, S ;
Santini, P ;
Amoretti, G ;
Piligkos, S ;
Timco, G ;
Winpenny, REP .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[47]   Proposal for quantum gates in permanently coupled antiferromagnetic spin rings without need of local fields [J].
Troiani, F ;
Affronte, M ;
Carretta, S ;
Santini, P ;
Amoretti, G .
PHYSICAL REVIEW LETTERS, 2005, 94 (19)
[48]   Potential for spin-based information processing in a thin-film molecular semiconductor [J].
Warner, Marc ;
Din, Salahud ;
Tupitsyn, Igor S. ;
Morley, Gavin W. ;
Stoneham, A. Marshall ;
Gardener, Jules A. ;
Wu, Zhenlin ;
Fisher, Andrew J. ;
Heutz, Sandrine ;
Kay, Christopher W. M. ;
Aeppli, Gabriel .
NATURE, 2013, 503 (7477) :504-+
[49]   Chemical Engineering of Molecular Qubits [J].
Wedge, C. J. ;
Timco, G. A. ;
Spielberg, E. T. ;
George, R. E. ;
Tuna, F. ;
Rigby, S. ;
McInnes, E. J. L. ;
Winpenny, R. E. P. ;
Blundell, S. J. ;
Ardavan, A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (10)
[50]   Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals [J].
Wesenberg, J ;
Molmer, K .
PHYSICAL REVIEW A, 2003, 68 (01) :5