Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB

被引:105
作者
Lu, Yu [1 ]
Zhang, Guoqing [1 ]
Sun, Zhijian [1 ]
Zhang, Weidong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Formation; Surface vessel; Adaptive; Minimal learning parameter; Disturbance observer; FOLLOWER FORMATION CONTROL; COOPERATIVE CONTROL; MULTIAGENT SYSTEMS; NONLINEAR-SYSTEMS; TRACKING CONTROL; VEHICLES; SHIPS; STABILIZATION; DISTURBANCES; GUIDANCE;
D O I
10.1007/s11071-018-4374-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the leader-follower formation problem of multiple underactuated autonomous surface vessels in the presence of model uncertainties and environmental disturbances. Specially, the formation is defined in the body-fixed coordinates of the leader vessel and velocities of the leader are unavailable to followers. A novel robust adaptive formation control scheme based on the minimal learning parameter (MLP) algorithm and the disturbance observer (DOB) is presented. To address related formation configurations and unknown velocities of the leader, adaptive programming of the virtual vessel is introduced. By the neural networks (NNs) technique, the DOB is constructed and the formation controller is developed with different MLP-based adaptive laws. Under the proposed controller, it is shown that the desired formation can be achieved only with the position and yaw angle of the leader. And formation errors are guaranteed to be semiglobal uniformly ultimately bounded. Compared with existing results, the NNs-based DOB can compensate disturbances effectively with less model information. Meanwhile, the formation controller and the DOB can share the same set of NNs with smaller computational effort, where only two parameters need to be learned online for each of them. Simulations and comparison results are provided to illustrate the effectiveness of theoretical results.
引用
收藏
页码:503 / 519
页数:17
相关论文
共 51 条
  • [1] Behavior-based formation control for multirobot teams
    Balch, T
    Arkin, RC
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (06): : 926 - 939
  • [2] A coordination architecture for spacecraft formation control
    Beard, RW
    Lawton, J
    Hadaegh, FY
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (06) : 777 - 790
  • [3] Breivik M., 2008, WORLD C, V17, P16008
  • [4] Adaptive Neural Output Feedback Control of Uncertain Nonlinear Systems With Unknown Hysteresis Using Disturbance Observer
    Chen, Mou
    Ge, Shuzhi Sam
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (12) : 7706 - 7716
  • [5] Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
    Chen, Mou
    Ge, Shuzhi Sam
    Ren, Beibei
    [J]. AUTOMATICA, 2011, 47 (03) : 452 - 465
  • [6] Disturbance-Observer-Based Control and Related Methods-An Overview
    Chen, Wen-Hua
    Yang, Jun
    Guo, Lei
    Li, Shihua
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (02) : 1083 - 1095
  • [7] Leader-follower formation control of nonholonomic mobile robots with input constraints
    Consolini, Luca
    Morbidi, Fabio
    Prattichizzo, Domenico
    Tosques, Mario
    [J]. AUTOMATICA, 2008, 44 (05) : 1343 - 1349
  • [8] Leader-follower formation control of underactuated autonomous underwater vehicles
    Cui, Rongxin
    Ge, Shuzhi Sam
    How, Bernard Voon Ee
    Choo, Yoo Sang
    [J]. OCEAN ENGINEERING, 2010, 37 (17-18) : 1491 - 1502
  • [9] Practical control of underactuated ships
    Do, K. D.
    [J]. OCEAN ENGINEERING, 2010, 37 (13) : 1111 - 1119
  • [10] Cooperative control of underactuated surface vessels
    Dong, W.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (09) : 1569 - 1580