Mixed-precision in-memory computing

被引:343
作者
Le Gallo, Manuel [1 ,2 ]
Sebastian, Abu [1 ]
Mathis, Roland [1 ]
Manica, Matteo [1 ,2 ]
Giefers, Heiner [1 ]
Tuma, Tomas [1 ]
Bekas, Costas [1 ]
Curioni, Alessandro [1 ]
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Zurich, Switzerland
基金
欧洲研究理事会;
关键词
AUTOPHAGY;
D O I
10.1038/s41928-018-0054-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As complementary metal-oxide-semiconductor (CMOS) scaling reaches its technological limits, a radical departure from traditional von Neumann systems, which involve separate processing and memory units, is needed in order to extend the performance of today's computers substantially. In-memory computing is a promising approach in which nanoscale resistive memory devices, organized in a computational memory unit, are used for both processing and memory. However, to reach the numerical accuracy typically required for data analytics and scientific computing, limitations arising from device variability and non-ideal device characteristics need to be addressed. Here we introduce the concept of mixed-precision in-memory computing, which combines a von Neumann machine with a computational memory unit. In this hybrid system, the computational memory unit performs the bulk of a computational task, while the von Neumann machine implements a backward method to iteratively improve the accuracy of the solution. The system therefore benefits from both the high precision of digital computing and the energy/areal efficiency of in-memory computing. We experimentally demonstrate the efficacy of the approach by accurately solving systems of linear equations, in particular, a system of 5,000 equations using 998,752 phase-change memory devices.
引用
收藏
页码:246 / 253
页数:8
相关论文
共 44 条
[1]   Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset Variability [J].
Ambrogio, Stefano ;
Balatti, Simone ;
Cubeta, Antonio ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) :2912-2919
[2]  
[Anonymous], 2017, PREPRINT
[3]  
[Anonymous], 2002, Accuracy and stability of numerical algorithms
[4]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[5]  
Anzt H, 2012, LECT NOTES COMPUT SC, V7134, P237
[6]  
Bekas C., 2009, P 2 WORKSH HIGH PERF
[7]  
Bojnordi MN, 2016, INT S HIGH PERF COMP, P1, DOI 10.1109/HPCA.2016.7446049
[8]   'Memristive' switches enable 'stateful' logic operations via material implication [J].
Borghetti, Julien ;
Snider, Gregory S. ;
Kuekes, Philip J. ;
Yang, J. Joshua ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2010, 464 (7290) :873-876
[9]   Novel lithography-independent pore phase change memory [J].
Breitwisch, M. ;
Nirschl, T. ;
Chen, C. F. ;
Zhu, Y. ;
Lee, M. H. ;
Lamorey, M. ;
Burr, G. W. ;
Joseph, E. ;
Schrott, A. ;
Philipp, J. B. ;
Cheek, R. ;
Happ, T. D. ;
Chen, S. H. ;
Zaidi, S. ;
Flaitz, P. ;
Bruley, J. ;
Dasaka, R. ;
Rajendran, B. ;
Rossnagel, S. ;
Yang, M. ;
Chen, Y. C. ;
Bergmann, R. ;
Lung, H. L. ;
Lam, C. .
2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, :100-+
[10]   Recent Progress in Phase-Change Memory Technology [J].
Burr, Geoffrey W. ;
Brightsky, Matthew J. ;
Sebastian, Abu ;
Cheng, Huai-Yu ;
Wu, Jau-Yi ;
Kim, Sangbum ;
Sosa, Norma E. ;
Papandreou, Nikolaos ;
Lung, Hsiang-Lan ;
Pozidis, Haralampos ;
Eleftheriou, Evangelos ;
Lam, Chung H. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2016, 6 (02) :146-162